WEEKLY ELECTRICITY **MARKET ANALYSIS**

22 May - 28 May 2011

Summary

Weekly average spot prices on the mainland ranged from \$29/MWh in Queensland to \$38/MWh in South Australia.

AUSTRALIAN ENERGY

REGULATOR

The weekly average spot price in Tasmania was \$45/MWh. This was driven by the spot price reaching around \$100/MWh and higher for extended periods. This generally occurred at times of low demand (for example from 2 am to 8 am on Saturday).

Spot market prices

Figure 1 sets out the volume weighted average (VWA) prices for the week 22 May to 28 May and the 10/11 financial year to date (YTD) across the NEM. It compares these prices with price outcomes from the previous week and year to date respectively.

Figure 1: Volume weighted average spot price by region (\$/MWh)

	Qld	NSW	VIC	SA	Tas
Average price for 22 May - 28 May 2011	29	31	35	38	45
% change from previous week*	-1	2	2	17	29
10/11 financial YTD	35	45	29	43	31
% change from 09/10 financial YTD **	-11	-18	-33	-51	3

*The percentage change between last week's average spot price and the average price for the previous week. Calculated on VWA prices prior to rounding. **The percentage change between the average spot price for the current financial year and the average spot price for the

previous financial year. Percentage changes are calculated on VWA prices prior to rounding.

Longer term market trends are attached in Appendix A^{1} .

Financial markets

Figures 2 to 9 show futures contract² prices traded on the Sydney Futures Exchange (SFE) as at close of trade on Monday 30 May 2011. Figure 2 shows the base futures contract prices for the next three calendar years, and the average over these three years. Also shown are percentage changes³ from the previous week.

Calculated on prices prior to rounding.

¹ Monitoring the performance of the wholesale market is a key part of the AER's role and an overview of the market's performance in the long term is provided on the AER website. Long-term statistics can be found there on, amongst other things, demand, spot prices, contract prices and frequency control ancillary services prices. To access this information go to

www.aer.gov.au -> Monitoring, reporting and enforcement -> Electricity market reports -> Long-term analysis. ² Futures contracts traded on the SFE are listed by d-cyphaTrade (<u>www.d-cyphatrade.com.au</u>). A futures

contract is typically for one MW of electrical energy per hour based on a fixed load profile. A base load profile is defined as the base load period from midnight to midnight Monday to Sunday over the duration of the contract quarter. A peak load profile is defined as the peak-period from 7 am to 10 pm Monday to Friday (excluding Public holidays) over the duration of the contract quarter.

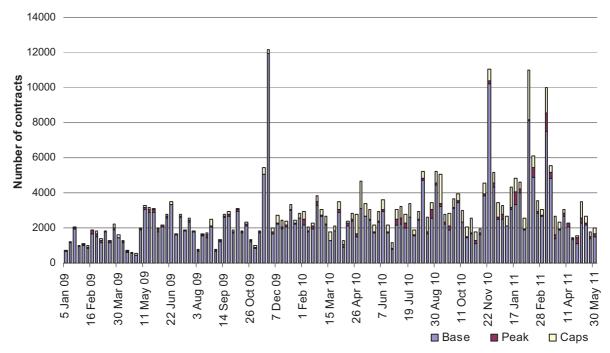
Figure 2: Base calendar year futures contract prices (\$/MWh)

	QI	LD	NSW		VIC		SA	
Calendar Year 2012	40	6%	45	4%	40	4%	44	3%
Calendar Year 2013	46	2%	50	3%	46	2%	67	0%
Calendar Year 2014	56	0%	59	0%	60	0%	69	0%
Three year average	47	2%	51	2%	49	2%	60	1%

Source: d-cyphaTrade www.d-cyphatrade.com.au

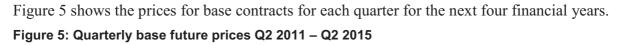
* denotes trades in the product.

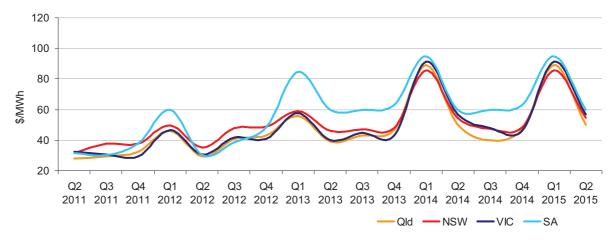

Figure 3 shows the \$300 cap contract price for Q1 2012 and calendar year 2012 and the percentage change⁴ from the previous week.


Figure 3: \$300 cap contract prices (\$/MWh)

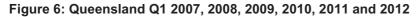
	Q	LD	NSW		VIC		SA	
Q1 2012 (% change)	17	0%	20	-2%	18	0%	32	0%
2012 (% change)	8	0%	11	-1%	7	0%	12	0%

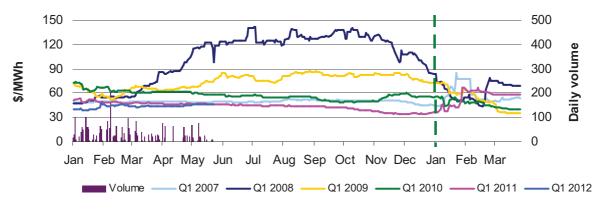
Source: d-cyphaTrade <u>www.d-cyphatrade.com.au</u> * denotes trades in the product.


Figure 4 shows the weekly trading volumes for base, peak and cap contracts. The date represents the end of the trading week.

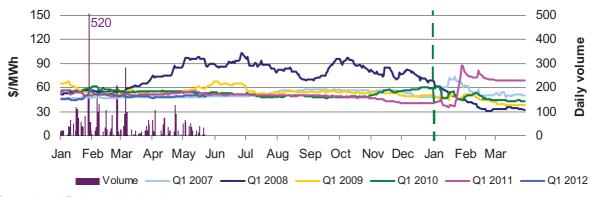


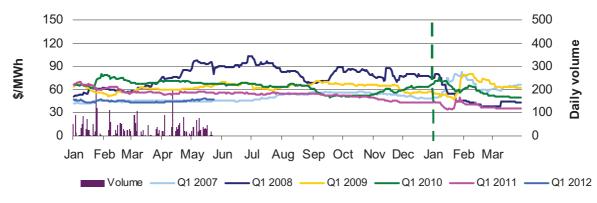
Source: d-cyphaTrade www.d-cyphatrade.com.au


⁴ Calculated on prices prior to rounding

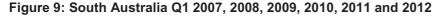


Source: d-cyphaTrade www.d-cyphatrade.com.au


Figures 6-9 compare for each region the closing daily base contract prices for the first quarter of 2007, 2008, 2009, 2010, 2011 and 2012. Also shown is the daily volume of Q1 2012 base contracts traded. The vertical dashed line signifies the start of the Q1 period for which the contracts are being purchased. To understand the diagrams, the dark-blue line in figure 6 demonstrates that throughout the middle of 2007, the market had an expectation of very high spot prices in the first quarter of 2008.



Source: d-cyphaTrade <u>www.d-cyphatrade.com.au</u>



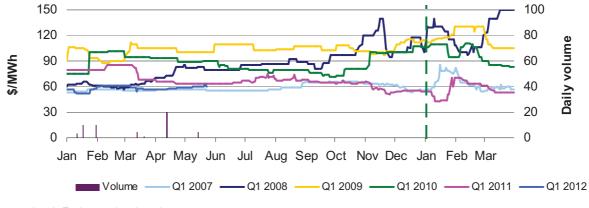

Source: d-cyphaTrade www.d-cyphatrade.com.au

Figure 8: Victoria Q1 2007, 2008, 2009, 2010, 2011 and 2012

Source: d-cyphaTrade www.d-cyphatrade.com.au

Source: d-cyphaTrade www.d-cyphatrade.com.au

*The daily volume scale for South Australia is smaller than for other regions to reflect the lower liquidity in the market in South Australia.

Spot market forecasting variations

The AER is required under the National Electricity Rules to determine whether there is a significant variation between the forecast spot price published by the Australian Energy Market Operator (AEMO) and the actual spot price and, if there is a variation, state why the AER considers the significant price variation occurred. It is not unusual for there to be significant variations as demand forecasts vary and as participants react to changing market conditions. There were 113 trading intervals throughout the week where actual prices varied significantly from forecasts⁵. This compares to the weekly average in 2010 of 57 counts and the average in 2009 of 103. Reasons for these variances are summarised in Figure 10⁶.

Figure 10: Reasons for variations	between forecast and actual prices
-----------------------------------	------------------------------------

	Availability	Demand	Network	Combination
% of total above forecast	0	10	0	0
% of total below forecast	88	2	0	0

 ⁵ A trading interval is counted as having a variation if the actual price differs significantly from the forecast price either four or 12 hours ahead.
⁶ The table summarises (as a percentage) the number of times when the actual price differs significantly from

 $^{^{\}delta}$ The table summarises (as a percentage) the number of times when the actual price differs significantly from the forecast price four or 12 hours ahead and the major reason for that variation. The reasons are classified as availability (which means that there is a change in the total quantity or price offered for generation), demand forecast inaccuracy, changes to network capability or as a combination of factors (when there is not one dominant reason). An instance where both four and 12 hour ahead forecasts differ significantly from the actual price will be counted as two variations.

Demand and bidding patterns

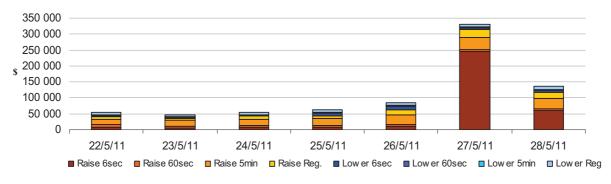
The AER reviews demand, network limitations and generator bidding as part of its market monitoring to better understand the drivers behind price variations. Figure 11 shows the weekly change in total available capacity at various price levels during peak periods⁷. For example, in Queensland 101 MW less capacity was offered at prices under \$20/MWh this week compared to the previous week. Also included is the change in average demand during peak periods, for comparison.

MW	<\$20/MWh	Between \$20 and \$50/MWh	Total availability	Change in average demand
QLD	-101	74	141	10
NSW	-23	-32	17	-92
VIC	500	-79	495	98
SA	-232	20	-198	82
TAS	-42	-59	2	47
TOTAL	102	-76	457	145

Figure 11: Changes in available generation and average demand compared to the previous week during peak periods

Ancillary services market


The total cost of frequency control ancillary services (FCAS) on the mainland for the week was \$381 000 or less than one per cent of energy turnover on the mainland.


The total cost of FCAS in Tasmania for the week was \$393 000 or 4.2 per cent of energy turnover in Tasmania.

On 27 May at 9.34 pm, effective from 9.40 pm, Hydro Tasmania rebid 103 MW of raise 6 second services (and all other contingency services) from prices below 10/MW to the price cap. The reason given was "2130P Change in environmental requirement: Gordon SL". A further rebid at 9.47 pm, effective from 9.55 pm, reversed the previous rebid. The reason given was "2135P targets > forecast: Gordon, r6 prices > expected". As a result, the price of raise 6 second services reached the price cap between 9.40 pm and 9.50 pm.

This event accounted for around 60 per cent of the total weekly cost of FCAS for Tasmania.

Figure 12 shows the daily breakdown of cost for each FCAS for the NEM.

Australian Energy Regulator June 2011

© Commonwealth of Australia

⁷ A peak period is defined as between 7 am and 10 pm on weekdays.

Detailed NEM Price

and Demand Trends

for Weekly Market Analysis 22 May - 28 May 2011 AUSTRALIAN ENERGY REGULATOR

Table 1: Financial year to date spot market volume weighted average price

Financial year	QLD	NSW	VIC	SA	TAS
2010-11 (\$/MWh) YTD	35	45	29	43	31
2009-10 (\$/MWh) YTD	39	54	43	87	30
Change*	-11%	-18%	-33%	-51%	3%
2009-10 (\$/MWh)	37	52	42	82	30

Table 2: NEM turnover

Financial year	NEM Turnover** (\$, billion)	Energy (TWh)
2010-11 (YTD)	\$6.889	184
2009-10	\$9.643	206
2008-09	\$9.413	208

Table 3: Recent monthly and quarterly spot market volume weighted average price and turnover

Volume weighted						Turnover
average (\$/MWh)	QLD	NSW	VIC	SA	TAS	(\$, billion)
Jan-11	48	58	50	183	26	0.959
Feb-11	123	190	48	33	29	1.794
Mar-11	28	27	26	23	26	0.414
Apr-11	25	27	26	28	27	0.374
May-11 (MTD)	28	30	33	33	39	0.441
Q1 2011	65	90	41	83	27	3.484
Q1 2010	46	52	67	134	27	3.014
Change*	41%	74%	-38%	-38%	2%	15.57%

Table 4: ASX energy futures contract prices at end of 30 May

	QLD		NSW		VIC		SA	
Q1 2012	Base	Peak	Base	Peak	Base	Peak	Base	Peak
Price on 23 May (\$/MW)	46	75	50	82	48	79	60	100
Price on 30 May (\$/MW)	46	75	50	82	47	79	60	100
Open interest on 30 May	1138	88	1300	190	1368	105	87	0
Traded in the last week (MW)	20	5	81	5	73	50	0	0
Traded since 1 Jan 11 (MW)	3111	81	4917	270	2856	51	78	0
Settled price for Q1 11(\$/MW)	57	96	68	118	35	51	53	93

Table 5: Changes to availability of low priced generation capacity offered to the market

Comparison:	QLD	NSW	VIC	SA	TAS	NEM
March 11 with March 10						
MW Priced <\$20/MWh	-287	-85	-360	227	201	-909
MW Priced \$20 to \$50/MWh	2	76	42	278	273	219
April 11 with April 10						
MW Priced <\$20/MWh	-1035	-451	-384	272	-6	-1604
MW Priced \$20 to \$50/MWh	339	521	323	183	91	1457
May 11 with May 10 (MTD)						
MW Priced <\$20/MWh	-1490	-70	-522	293	-198	-1988
MW Priced \$20 to \$50/MWh	466	949	644	75	92	2226

*Note: These percentage changes are calculated on VWA prices prior to rounding ** Estimated value