Investment Evaluation Summary (IES)

Project Details:

Project Name:	Pole Staking
Project ID:	00670
Thread:	Structures
CAPEX/OPEX:	CAPEX
Service Classification:	Standard Control
Scope Type:	В
Work Category Code:	RESTK
Work Category Description:	Pole Staking
Preferred Option Description:	Stake Poles.
Preferred Option Estimate (Nominal Dollars):	\$16,600,000

	17/18	18/19	19/20	20/21	21/22	22/23	23/24	24/25	25/26	26/27
Unit (\$)	\$932	\$932	\$932	\$932	\$932	\$932	\$932	\$932	\$932	\$932
Volume	1,330	1,680	1,750	1,810	1,820	1,820	1,820	1,820	1,810	1,810
Estimate (\$)	\$1,239,560	\$1,565,760	\$1,631,000	\$1,686,920	\$1,696,240	\$1,696,240	\$1,696,240	\$1,696,240	\$1,686,920	\$1,686,920
Total (\$)	\$1,239,560	\$1,565,760	\$1,631,000	\$1,686,920	\$1,696,240	\$1,696,240	\$1,696,240	\$1,696,240	\$1,686,920	\$1,686,920

Governance:

Project Initiator:	Erin Cook	Date:	26/03/2015
Thread Approved:	David Ellis	Date:	02/11/2015
Project Approver:	David Eccles	Date:	30/10/2015

Document Details:

Version Number:	1
-----------------	---

Related Documents:

Description	URL
RESTK NPV	http://projectzone.tnad.tasnetworks.com.au/business-projects /nis-program/DD17SAM/Deliverables /Overhead%20Systems%20and%20Structures /RESTK%20Pole%20Staking/RESTK%20NPV.xlsm
RESTK IES	http://projectzone.tnad.tasnetworks.com.au/business-projects /nis-program/DD17SAM/Deliverables /Overhead%20Systems%20and%20Structures /RESTK%20Pole%20Staking /RESTK%20Investment%20Evaluation%20Summary%20(IES).docx

Section 1 (Gated Investment Step 1)

1. Background

Wooden poles deteriorate at a greater rate below the ground line than above. Thus, the above ground section may have many years of useful service left once the below ground section has deteriorated. Stakes (or ground-line reinforcing) may be installed on wood poles to strengthen the pole at and below ground level and prolong the service life of the pole by at least 15 years.

The historic and forecast costs for pole staking costs are shown in figure 1 below.

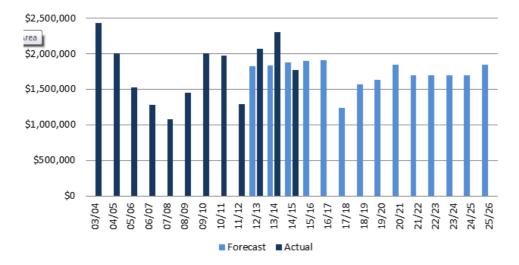


Figure 1: Pole Staking Expenditure

Historical pole staking volumes:

05/06 1425	06/07 1193	07/08 1115	08/09 1333	09/10 1660	10/11 1728	11/12 1052	12/13 1603	13/14 1932	
Forecas	t pole sta	king volur	nes:						
17/18 1330	18/19 1680	19/20 1750	20/21	21/22 1820	22/23 1820	23/24 1820	24/25 1820	25/26	26/27 1810

1.1 Investment Need

Install Pole Stake - Reinforce Ground Line of Impaired Poles

The purpose of this program is to defer replacement of poles by staking suitable poles. As wooden poles deteriorate at a greater rate below ground level than above reinforcement at ground level using staking technique defers the replacement of the decayed wood pole by up to and in excess of 15 years. Whole of life analysis has indicated that staking is a cost effective method of extending the life if a wooden pole.

Wood poles are staked as per Network Policy NN R AM 11 Wood pole reinstatement by ground-line reinforcement. After staking, testing of the pole continues on the usual 5 year cycle, however additional testing is undertaken further up the pole to ensure appropriate strengths are maintained above the reinforcement.

Analysis of the number of poles staked each financial year show that after a decrease in 2005/2006, there has been a relatively constant trend of pole staking in subsequent years. This indicates that the defects are being appropriately managed and the inspection cycle is prudent. The rise in condemning poles will also include a certain percentage of the staked population, which is contributing to the increase in that trend.

1.2 Customer Needs or Impact

TasNetworks continues to undertake consumer engagement as part of business as usual and through the voice of the customer program. This engagement seeks in depth feedback on specific issues relating to:

- how it prices impact on its services
- current and future consumer energy use
- outage experiences (frequency and duration) and expectations
- communication expectations
- STPIS expectations (reliability standards and incentive payments)
- Increasing understanding of the electricity industry and TasNetworks

Consumers have identified safety, restoration of faults/emergencies and supply reliability as the highest performing services offered by TasNetworks.

Consumers also identified that into the future they believe that affordability, green, communicative, innovative, efficient and reliable services must be provided by TasNetworks.

This project specifically addresses the requirements of consumers in the areas of safety and affordability.

1.3 Regulatory Considerations

This project is required to achieve the following capital and operational expenditure objectives as described by the National Electricity Rules section 6.5.7(a). (4) maintain the safety of the distribution system through the supply of standard control services.

2. Project Objectives

The aim of this program is to install pole stakes to reinforce the ground line of unserviceable poles.

3. Strategic Alignment

3.1 Business Objectives

Strategic and operational performance objectives relevant to this project are derived from TasNetworks 2014 Corporate Plan, approved by the board in 2014. This project is relevant to the following areas of the corporate plan:

- We understand our customers by making them central to all we do.
- We enable our people to deliver value.
- We care for our assets, delivering safe and reliable networks services while transforming our business.

3.2 Business Initiatives

The business initiatives that relate to this project are as follows:

• Safety of our people and the community, while reliably providing network services, is fundamental to the TasNetworks

business and remains our immediate priority

• We care for our assets to ensure they deliver safe and reliable network services

The strategic key performance indicators that will be impacted through undertaking this project are as follows:

- Price for customers lowest sustainable prices
- Zero harm significant and reportable incidents
- Sustainable cost reduction efficient operating and capital expenditure

4. Current Risk Evaluation

The following section details the business risks specific to this project, as identified in TasNetworks Risk Management Framework as at March 2015.

TasNetworks business risks are analysed utilising the 5x5 corporate risk matrix, as outlined in TasNetworks Risk Management Framework.

Relevant strategic business risk factors that apply are follows:

Risk Category	Risk	Likelihood	Consequence	Risk Rating
	Excessive payout of reliability incentive schemes (STPIS, GSL, NCEF) from declining network reliability	Unlikely	Moderate	Medium
Financial	Pole failure results in catastrophic bushfire, insurance providers refuse to cover TasNetworks for future events	Unlikely	Severe	High
	Pole failure results in serious injury or fatality	Possible	Major	High
Customer	Pole failure results in localised interruption to supply	Almost certain	Minor	Medium
Regulatory Compliance	Pole failure results in increased number of unplanned outages leads to systemic NCEF breaches	Possible	Moderate	Medium
Network Performance	Pole failure results in localised interruption to supply	Almost certain	Minor	Medium
	Pole failure results in bushfire with significant media coverage	Possible	Moderate	Medium
Reputation	Pole failure results in catastrophic bushfire with significant media coverage	Unlikely	Major	Medium
	Pole failure results in			

	serious injury or fatality with significant media coverage	Unlikely	Major	Medium
	Pole failure results in bushfire with some loss to property	Possible	Major	High
Environment and Community	Pole failure results in catastrophic bushfire with widespread loss of property and potential fatality	Unlikely	Severe	High
Safety and People	Pole failure results in injury or death to member of the public	Unlikely	Severe	High

4.1 5x5 Risk Matrix

TasNetworks business risks are analysed utilising the 5x5 corporate risk matrix, as outlined in TasNetworks Risk Management Framework.

Relevant strategic business risk factors that apply are follows:

Risk Category	Risk	Likelihood	Consequence	Risk Rating
Customer	Localised interruption to supply	Almost Certain	Negligible	Medium
Environment and Community	Pole failure results in bushfire with some loss to property	Unlikely	Major	Medium
Financial	Pole failure results in serious injury or fatality	Likely	Minor	Medium
Financial	Excessive payout of reliability incentive schemes (STPIS, GSL, NCEF) from declining network reliability	Unlikely	Minor	Low
Network Performance	Localised interruption to supply	Unlikely	Minor	Low
Regulatory Compliance	Increased number of unplanned outages leads to systemic NCEF breaches	Possible	Moderate	Medium
Reputation	Pole failure results in serious injury or fatality with significant media coverage	Rare	Major	Medium
Safety and People	Pole failure results in injury or death to member of the public	Rare	Severe	Medium

Section 1 Approvals (Gated Investment Step 1)

Project Initiator:	Erin Cook	Date:	26/03/2015	
Line Manager:		Date:		
Manager (Network Projects) or Group/Business Manager (Non-network projects):		Date:		
[Send this signed and endorsed summary to the Capital Works Program Coordinator.]				

Actions		
CWP Project Manager commenced initiation:	Assigned CW Project Manager:	
PI notified project initiation commenced:	Actioned by:	

Section 2 (Gated Investment Step 2)

5. Preferred Option:

The preferred option is to stake impaired poles that have deteriorated below ground to restore their ground-line strength and prolong their life.

5.1 Scope

To rebuild the ground-line strength of poles by staking those that are identified from the pole inspection program that have been classified as impaired. The work to be undertaken shall be the staking of impaired poles is generally be sourced from the pole inspection program (AIOHS), managed by the Works Delivery. The pole inspection program will identify poles that are classified as impaired and suitable for staking. Selection of staking system shall be as guided in the Distribution Overhead Line Design & Construction Standard drawing numbers D-OH1-3.2/12 & 13.

5.2 Expected outcomes and benefits

The expected outcomes of this program are continued safe and reliable running of the network. Staking impaired poles prolong the service life of a pole by at least 15 years and performing remedial works on steel towers extends the life of the tower in the order of twenty to thirty years, in both cases deferring the significant cost of replacement.

PROGRAM BENEFITS

- · Reduced environmental and safety risk
- Reduced fault response
- Reduced customer outages
- Deferred replacement cost

5.3 Regulatory Test

6. Options Analysis

Option Summary

Option 0 - Do Nothing:

Do nothing. All poles and steel towers run to failure.

Advantages:

• No upfront costs

Disadvantages:

- Does not reduce the likelihood of injury or fatality due to a failing pole.
- Does not reduce the likelihood of exposure of the public to energised electrical equipment or being hit by a failed pole.
- Customers will be exposed to increased unplanned outages.

Option 1:

Stake Poles & Reinforce tower legs.

Advantages:

- Costs in completing this work are sustainable
- Minimises likelihood of exposure to the public
- Defers costs of asset replacement

Disadvantages:

- Poles will still need to be replaced at some time in the future
- Cannot completely eliminate the risk of poles failing in service

Option 2:

Replace impaired poles & towers

Advantages:

• Minimises likelihood of exposure to the public

Disadvantages:

- High cost unsustainable
- Possibly replacing entire structures for small defects
- Cannot completely eliminate the risk of poles failing in service

6.1 Option Summary

Option description		
Option 0 Do nothing. All poles and steel towers run to failure.		
Option 1 (preferred)	Stake Poles.	
Option 2	Replace impaired poles.	

6.2 Summary of Drivers

Option				
	Minimise risks to public safety	Minimise outage frequency and duration	Deliver the most cost effective solution	
Option 0	I line ricks to nilnlic satety from noie	There will be a higher incident of unplanned outages due to pole failure	This option has the lowest upfront costs. Additional costs to the Business are incurred in the form of NECF and STPIS payments. As this option does not address the risk to public safety it is highly likely to involve further costs due to incidents and legal proceedings.	
	Minimise risks to public safety	Minimise outage frequency and duration	Deliver the most cost effective solution	
Option 1 (preferred)	The risks to public safety from pole failure are low, but cannot remove the risk entirely.		This is the lowest cost option that addresses the risk to public safety. Costs of asset replacement are deferred.	
Option 2	Minimise risks to public safety	Minimise outage frequency and duration	Deliver the most cost effective solution	
	Fariare are rem, sacreamine	There will be a lower incident of unplanned outages due to pole failure.	This is the highest cost option.	

6.3 Summary of Costs

Option	Total Cost (\$)
Option 0	\$0
Option 1 (preferred)	\$16,600,000
Option 2	\$164,500,000

6.4 Summary of Risk

Option No.	Option description		Reason got selection
0	Do Nothing	S0	Risk unacceptable to TasNetworks

1	Stake Poles & Reinforce tower legs	-\$9,953,178	Recommended option as it addresses the risk to public safety at a reasonable cost.
2	Replace impaired poles & towers	-\$66,844,474	Costs too high.

The below table shows the residual risks with the preferred option in place. The preferred option reduces the residual risk from the uncontrolled risk rating. The residual risk ratings are reduced to Medium or lower, which is within TasNetworks' risk appetite.

Risk Category	Risk	Likelihood	Consequence	Residual Risk
	Excessive payout of reliability incentive schemes (STPIS, GSL, NCEF) from declining network reliability	Unlikely	Moderate	Medium
Financial	Pole failure results in catastrophic bushfire, insurance providers refuse to cover TasNetworks for future events	Rare	Severe	Medium
	Pole failure results in serious injury or fatality	Rare	Major	Medium
Customer	Pole failure results in localised interruption to supply	Possible	Minor	Low
Regulatory Compliance	Pole failure results in increased number of unplanned outages leads to systemic NCEF breaches	Unlikely	Moderate	Medium
Network Performance	Pole failure results in localised interruption to supply	Possible	Minor	Low
	Pole failure results in bushfire with significant media coverage	Unlikely	Moderate	Medium
Reputation	Pole failure results in catastrophic bushfire with significant media coverage	Rare	Major	Medium
	Pole failure results in serious injury or fatality with significant media coverage	Unlikely	Major	Medium
	Pole failure results in bushfire with some loss to property	Unlikely	Major	Medium
Environment and Community	Pole failure results in catastrophic bushfire with widespread loss of property and potential fatality	Rare	Severe	Medium

Safety and People	Pole failure results in injury or death to	Rare	Severe	Medium
reopie	member of the public			

6.5 Economic analysis

Option	Description	NPV
Option 0	Do nothing. All poles and steel towers run to failure.	\$0
Option 1 (preferred)	Stake Poles.	-\$9,953,178
Option 2	Replace impaired poles.	-\$66,844,474

6.5.1 Quantitative Risk Analysis

-

6.5.2 Benchmarking

TasNetworks Pole Staking and Steel Tower Reinforcement strategies are in line with standard industry practice around the country.

6.5.3 Expert findings

_

6.5.4 Assumptions

-

Section 2 Approvals (Gated Investment Step 2)

Project Initiator:	Erin Cook	Date:	26/03/2015		
Project Manager:		Date:			
Actions	Actions				
Submitted for CIRT review:		Actioned by:			
CIRT outcome:					