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Introduction - Climate Change

Climate change is having a significant impact on economies and societies across the globe. Seven of the
world’s hottest years have occurred in the last decade and there is growing evidence to link an increase in
frequency and intensity of extreme weather events, including heatwaves and cyclones, to anthropogenic
climate change1.

The most recent report from the Intergovernmental Panel on Climate Change (“IPCC”) stated that it was
unequivocal that human influence has warmed the atmosphere, ocean and land, with global mean surface
temperature (“GMST”) having increased by 1.09°C between the pre-industrial baseline period (1850-1900) and
the most recent decade of 2011-20.

It further states that climate change has impacted many weather and climate extremes in every region across
the globe with evidence of observed changes in extremes such as heatwaves, heavy precipitation, droughts,
and tropical cyclones. Without immediate and severe reductions in emissions, global warming of 1.5°C and 2°C
will be exceeded during the 21st century. On current projections, the IPCC estimate 3°C of warming by the end
of the century, increasing the risks of more uncertainty and extreme events.

Australia is recognised as having a higher level of susceptibility to climate impacts compared to other
countries2. Land areas have warmed by around 1.4°C between ~1910 and 2020, influencing heat extremes,
rainfall (more time in drought, but more intense heavy rainfall events), number of dangerous fire weather days
and a longer fire season. This assessment has quantified the impacts of RCP4.5 and RCP8.5, the associated
projected temperatures of those scenarios are summarised in the table below:

Reference 1: CarbonBrief, ‘Mapped: How climate change affects extreme weather around the world’, 2022, Accessed 8 November 2022

Climate 
Scenario

Radiative Force 
in 2100

GHG
Emissions

Change in Global Mean 
Surface Temperature3

Climate Scenario 
RCP 2.6

2.6 W/m2 GHG emissions decline after 2020 
and zero by 2100.

1.60C (0.90C - 2.30C)

Climate Scenario 
RCP 4.5

4.5 W/m2 GHG emissions continue to rise to 
2040, then decline.

2.40C (1.70C – 3.20C)

Climate Scenario 
RCP 6.0

6.0 W/m2 GHG emissions continue to rise to 
2080, then decline.

2.80C (2.00C – 3.70C)

Climate Scenario 
RCP 8.5

8.5 W/m2 Emissions continue to increase in 
line with current business-as-usual 
pathway. GHG emissions continue 
to rise to 2100, which is the year 
that climate models are generally 
projected out to.

4.30C (3.20C - 5.40C)

Greenhouse gases are those gaseous constituents of the atmosphere, both natural and anthropogenic, that
absorb and emit radiation at specific wavelengths within the spectrum of terrestrial radiation emitted by the
Earth’s surface, the atmosphere itself and by clouds. This property causes the greenhouse effect. Water
vapour (“H2O”), carbon dioxide (“CO2”), nitrous oxide (“N2O”), methane (“CH4”) and ozone (“O3”) are the
primary GHGs in the Earth’s atmosphere.

The change in global mean surface temperature for 2081 – 2100 is in reference to the global mean surface
temperature at pre-industrial times 1850 – 1900. The possible range represents the 5th to 95th percentile of the
model simulations.

Table 1: Details of Representative Concentration Pathways

Reference 2: HSBC, ‘Fragile Planet 2022’, 2022, Accessed 8 November 2022
Reference 3: IPCC, ‘Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental 
Panel on Climate Change’, 2013, Accessed 8 November 2022
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Introduction - Essential Energy Response

Across 7 months in 2022, Essential Energy (“EE”) has performed an extensive climate impact assessment on
three acute hazards (bushfire, flood, and windstorm) to quantify the range of potential impacts that these
hazards may have on EE’s assets and the customers they serve. EE commissioned KPMG’s climate impact
assessment methodology and Risk Frontier’s catastrophe models for bushfire and flood risk.

Risk Frontiers is a specialist in catastrophe loss modelling, climate risk and resilience based in Sydney, NSW. It
provides development and maintenance of natural catastrophe models focussed on the Asia Pacific Region and
provides innovative science-driven research, analysis and solutions. Within this engagement, in addition to
analysis of publicly available climate data, Risk Frontiers utilised FireAUS and FloodAUS proprietary software.

Two climate projections were considered within the assessment. The two scenarios were selected as a
plausible projection of future global mean temperatures (RCP4.5) and a worst case projection (RCP8.5),
although the actions of Governments and Organisations around the globe to date would indicate that the worse
case scenario selected is unlikely to be realised.

Multiple time horizons were considered within the assessment, as different time horizons are relevant
depending on the business decision. For example 2070 provides a time horizon where the average age of poles
would be 87 years, which exceeds an assumed 75 year lifecycle for poles, while 2050 provides a time horizon
where changes in climate begins to accelerate.

The outputs of the assessment provide EE decision makers with a wide range of metrics to allow them to
make informed decisions based on a defensible and scientific approach. The assessment was performed on
Essential Energy’s current portfolio of assets with no new interventions. The only exception is the model
assumed that poles were to be replaced by a new pole of the same material once they reach 75 years of age.

This report summarises the approach and findings of the assessment at a depot level. Further details on the
approach can be found in an accompanying playbook titled “Essential Energy - Physical Vulnerability Playbook -
16 December 2022”.
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Executive Summary

Key Findings – Climate Projection

Climate projections capture the frequency, severity and
location of the climatic events of concern, before
allowing for their impact on Essential Energy’s asset
portfolio. In the table below, the current total expected
exposure to a bushfire footprint, a “>0m” flood, and a
90km/h windstorm is presented along with a description
of how it will change over time in Representative
Concentration Pathway (“RCP”) 4.5.

Average Number of Assets Exposed RCP 4.5 (‘000’)

Year Baseline 2050 2070 2090

Bushfire
(in footprint)

6.2 6.9 7.6 8.5

Flood (>0m) 3.1

Windstorm 
(90km/h)

118.4 189.5 155.4 172.3

RCP 4.5 is projected to lead to increases in occurrences
of bushfire and windstorm. The trend for windstorm
showcases volatility due to natural variability such as the
El Niño–Southern Oscillation (“ENSO”).

The number of assets exposed to a “>0m” flood does
not change within this assessment, as the flood model
used incorporates the impact of climate change on flood
depths, but not the size of a flood footprint. The results
may therefore under-represent the impact of climate
change on flood, all else being equal.

The chart below is a heatmap of the average count of
assets in a bushfire footprint for Baseline conditions.

The Baseline simulation of bushfire events shows a
concentration of number of assets at risk on the Mid
North Coast. The service depot with the highest average
number of assets exposed to a bushfire is Port
Macquarie, followed by Ballina, Taree, and Kempsey.

The chart below is a heatmap of average count of assets
within a simulated “>0m” flood footprint for Baseline
conditions.

The Baseline simulation of flood events shows a
concentration of number of assets at risk on the Mid
North Coast. The service depot with the highest average
number of assets exposed to a Flood is Taree, followed
by Albury, Port Macquarie, Ballina, and Maclean.
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In addition to projected burnt areas for bushfire, the
forest fire danger index (“FFDI”) has been modelled to
inform asset burn rates. In the table below, the likelihood
of an FFDI category, given and asset is within a bushfire
footprint has been summarised for RCP4.5.

Likelihood of FFDI for exposed assets RCP 4.5

Year Baseline 2050 2070 2090

High 58.8% 50.6% 43.0% 37.7%

Extreme 41.2% 49.4% 56.9% 62.2%

Catastrophic 0.01% 0.01% 0.06% 0.12%

In addition to the projected number of assets within a
“>0m”flood footprint, the number of assets within more
extreme flood depths was modelled to increase at a
materially higher rate.
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Executive Summary

The Baseline simulation of 90km/h windstorm events
shows a wider spread of risk across the network relative
to the other hazards. The highest exposure was in Bega,
followed by Broken Hill, Lismore, and Murwillumbah.

Key Findings – Climate Impacts

The impact analysis modelled the effect of the climate
projections on Essential Energy’s asset portfolio and
subsequent network impacts, assuming no new
interventions. The results have been broken into the key
modelled metrics: number of asset failures, total
financial costs (direct financial costs plus value of
customer reliability), customers interrupted, and
customer downtime.

Average Number of Asset Failures RCP 4.5

Year Baseline 2050 2070 2090

Bushfire 491 545 610 685

Flood 248 255 257 259

Windstorm 318 550 400 426

Combined 1,057 1,351 1,267 1,370

Key Findings – Number of Asset Failures

In the table below, the current total modelled number of
asset failures (poles, conductors, substations etc) due to
bushfire, flood, and windstorm is presented, along with a
projection of how it will change over time in RCP 4.5.

The chart below is a heatmap of combined impact on
asset failures due to bushfire, flood, and windstorm for
Baseline conditions (1st chart) and the % change by 2070
under RCP4.5 (2nd chart).

The Mid North Coast had the highest concentration of
asset failures across the three hazards in Baseline, while
the highest rate of increase was associated with Yass,
Tumbarumba, and Tumut.
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The chart below is a heatmap of average count of assets
within a simulated 90km/h windstorm for Baseline
conditions.
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RCP 4.5 is projected to lead to changes in asset failures
requiring replacement consistent with the exposure to
each hazard. Similar to the hazard exposure, windstorm
was modelled to increase to 2050 and decrease in 2070
before increasing again.
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Executive Summary

Key Findings – Total Financial Costs

To summarise the total financial costs to Essential
Energy due to the modelled impacts of bushfire, flood,
and windstorm, direct financial costs (asset replacement
and labour) are added to the value of customer reliability.

Total Financial Costs RCP4.5 ($m)

Year Baseline 2050 2070 2090

Bushfire 11.2 12.6 14.1 15.9

Flood 10.2 10.5 10.6 10.7

Windstorm 3.4 5.8 4.3 4.6

Combined 24.7 29.0 29.1 31.2 The Mid North Coast has the highest concentration of
total financial costs across the three hazards in Baseline,
while the depot with the highest increase was Yass.

In the table below, the current total modelled financial
costs due to bushfire, flood, and windstorm are
presented, along with a projection of how it will change
over time in RCP 4.5.

This results in a 26% increase in total financial costs
related to bushfire by 2070 under RCP4.5, a 5% increase
due to flood and a 26% increase due to windstorm. At a
combined hazard level, there is a modelled 17% increase
in the total financial costs by 2070 under RCP4.5
compared to Baseline.

The chart below is a heatmap of combined impact on
total financial costs due to bushfire, flood, and
windstorm for Baseline conditions (1st chart) and the %
change by 2070 under RCP4.5 (2nd chart).
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Key Findings – Direct Financial Costs

Direct financial costs include the cost to replace assets
and the labour cost required to restore failed assets. In
the table below, the current total modelled direct
financial costs due to bushfire, flood, and windstorm is
presented, along with a projection of how it will change
over time in RCP 4.5.

Average Direct Financial Costs RCP 4.5 ($m)

Year Baseline 2050 2070 2090

Bushfire 5.7 6.3 7.0 7.9

Flood 4.6 4.8 4.8 4.8

Windstorm 3.0 5.1 3.7 4.0

RCP 4.5 is projected to lead to increases in direct
financial costs for bushfire that are proportionately larger
than the changes in number of assets exposed to
bushfire. This outcome is driven by modelling for the
FFDI to have an impact on an asset’s burn rate.

This results in a 25% increase in direct financial costs
related to bushfire by 2070 under RCP4.5. The
corresponding impact for flood and windstorm is a 4%
and 26% increase respectively.
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Executive Summary

The chart below is a heatmap of combined impact on
direct financial costs due to bushfire, flood, and
windstorm for Baseline conditions (1st chart) and the %
change by 2070 under RCP4.5 (2nd chart).

The Mid North Coast has the highest concentration of
direct financial costs across the three hazards in
Baseline, while the highest rate of increase was
associated with Yass, Tumbarumba, and Tumut.
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𝑆𝑆𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷=1

𝑁𝑁

𝛼𝛼 ∗ 𝛽𝛽 ∗ 𝛾𝛾

𝛼𝛼 = customer downtime
𝛽𝛽 = energy at risk assumption
𝛾𝛾 = value of customer reliability rate assumption

In the table below, the current total modelled VCR due to
bushfire, flood, and windstorm is presented, along with a
projection of how it will change over time in RCP4.5.

Value of Customer Reliability RCP4.5 ($m)

Year Baseline 2050 2070 2090

Bushfire 5.5 6.3 7.1 8.0

Flood 5.5 5.8 5.8 5.9

Windstorm 0.5 0.7 0.6 0.6

RCP 4.5 is projected to lead to changes in the VCR. The
assumptions for energy at risk and value of customer
reliability rate were constant, therefore the VCR was
proportional to the total customer downtime.

This results in a 28% increase in direct financial costs
related to bushfire by 2070 under RCP4.5. The
corresponding impact for flood and windstorm is a 5%
and 27% increase respectively.

The chart below is a heatmap of combined impact on
value of customer reliability due to bushfire, flood, and
windstorm for Baseline conditions (1st chart) and the %
change by 2070 under RCP4.5 (2nd chart).
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Key Findings – Value of Customer Reliability

Where a customer was without energy, a value of
customer reliability (“VCR”) was calculated as:



Commercial-in-confidence9 Essential Energy | Climate Impact Assessment 2022

Executive Summary

Key Findings – Customer Downtime

Following the de-energisation of feeder-segments, EE
would restore assets according to a priority score. Once
all failed assets on a feeder-segment have been
restored, then the feeder-segment is re-energised, as
long as all upstream feeder-segment are energised.

In the table below, the current total modelled customer
downtime due to bushfire, flood, and windstorm is
presented, along with a projection of how it will change
over time in RCP4.5.

RCP4.5 is projected to lead to changes in customer
interruptions. Similar to the hazard exposure, windstorm
was modelled to increase to 2050 and decrease in 2070
before increasing again. While, Flood was modelled to
have a minor impact to customer interruptions.

Customers Downtime RCP4.5 (‘000’ hours)

Year Baseline 2050 2070 2090

Bushfire 100.7 116.1 129.2 145.8

Flood 101.2 105.7 106.6 107.5

Windstorm 1.9 3.4 2.6 2.8

RCP 4.5 is projected to lead to changes in customer
downtime. Customer downtime was modelled, such that
it would not necessarily be proportional to modelled
asset failures.

The number of service crews deployed within a service
depot was capped at 20 per service depot. Where asset
damage was significant within a depot, there would be
waiting time before some assets within that depot could
be tended to. This resulted in significant customer
downtime.

In the table below, the current total modelled number of
customers interrupted due to bushfire, flood, and
windstorm is presented, along with a projection of how it
will change over time in RCP4.5.

Customers Interrupted RCP4.5 (‘000’)

Year Baseline 2050 2070 2090

Bushfire 1.1 1.2 1.4 1.5

Flood 0.9 0.9 0.9 0.9

Windstorm 0.4 0.7 0.5 0.6

Key Findings – Customer Interruptions

The climate impact assessment quantifies network and
customer impacts, which are downstream outcomes
following a modelled asset failure.

Customers will have their energy services disrupted
where an asset failure results in the de-energisation of a
feeder-segment. The identification of de-energised
feeder-segments is informed by a NEO4J connectivity
model. Switching was not considered within the
analysis.

Change

The Mid North Coast has the highest concentration of
VCR impact across the three hazards in Baseline, while
the highest rate of increase was associated with Broken
Hill and Wilcannia, although the quantum is $1.3k for
Broken Hill in 2070 under RCP4.5, while it is $1.7m for
Port Macquarie.

One limitation of the data was related to private
conductors where reclosers and sectionalisers of very
long private conductors could not be identified. This
resulted in long single assets that were susceptible to
vegetation impacts due to their length and having
widespread customer impacts. As such, Bulahdelah has
been greyed out to omit results caused by this data
limitation. This limitation primarily impacted the
windstorm hazard due to the increase in exposure to
vegetation impacts for a long single asset.

The VCR can be assessed by the number of customer
interruptions and the duration of customer downtime.
These metrics are explored below.
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Background, Scope and Key Terms

Essential Energy’s climate impact assessment uses a stochastic Monte Carlo Simulation Model
(“MCSM”). The results of this modelling will be used to support EE’s business case for resilience
expenditure to the Australian Energy Regulator (“AER”) for physical climate risk.

A business case to the AER needs to be supported by:

• scientifically accurate climate models

• asset and network impact logic that is representative of the assets and network

• appropriately granular asset impact modelling

• robust model assumption setting process

Each of these requirements are addressed within this report, along with the results and conclusions
of the assessment.

In the table below, some of the key terminology used within this analysis have been described in
lay terms.

Description of Key Terms

Baseline The present-day baseline climate equivalent to average conditions over the past 10-20 years.

Percentile
A percentile is a statistical term used to describe how an outcome compares to the full range of 
possible outcomes. For example a 99th percentile will be greater than 99% of all the possible 
outcomes.

Stochastic

A stochastic process within the Climate Impact Assessment model is an algorithm used to 
replicate a real world phenomena that occurs with an assumed likelihood. One example is a 
burn rate, which describes how likely an asset will burn if it is within a bushfire footprint. Across 
the 30,000 simulations, an algorithm will determine if an asset burns based on a random 
number generator, where the average result should broadly match the assumed rate.

Representative 
Concentration 

Pathway

Representative Concentration Pathways (“RCP”) describe a wide range of possible changes in 
future anthropogenic Greenhouse Gas (“GHG”) emissions. The numerals associated with the 
naming of the RCPs correspond to the radiative forces reached by 2100. For example, RCP4.5 
corresponds to 4.5 W/m2 of radiative forces in 2100, which assumed GHG emissions continue 
to rise to 2040, then decline.

Bushfire

A bushfire within this assessment is defined as an ignition of vegetation due to all possible 
sources, which then propagates as damaging fires. The area covered by the propagation of fires 
is called the bushfire footprint. These damaging fires may come into close proximity to EE 
assets and an asset is susceptible to burning if it is located within close proximity (1km) of a 
bushfire. A bushfire footprint has been simulated to 1km granularity.

Forest Fire 
Danger Index

In Australia, the McArthur Forest Fire Danger Index (“FFDI”) (McArthur 1967) is widely used to 
forecast the influence of weather on fire behaviour, and the Australian Bureau of Meteorology 
(“BoM”) routinely issues forecasts of Grassland and Forest Fire Danger Index (“GFDI” and 
“FFDI”) for use by fire authorities. This assessment focussed on FFDI as a risk measure, as the 
most severe fires are generally related to forest fires. 

Flood
A flood within this assessment is defined as a build up of water due to extreme rainfall and it 
covers riverine flood, but not flash flood4. The area under water is called the flood footprint. The 
flood footprint has been simulated to a 100 metre granularity.

Windstorm
A windstorm within this assessment is defined as the occurrence of windspeeds in excess of 
90km/h, which is the level identified by the Bureau of Meteorology for damaging winds.

Reference 4: Australian Bureau of Meteorology, ‘Understanding floods’, 2020, Accessed 8 November 2022 

Table 2
Description of 
Key Terms

Overview Climate Projection Climate Impact Appendices
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Overview of Approach – Climate Projections

The approach adopted by EE to project climate uses a selection of global and regional climate
models to inform climatic conditions. Specialist catastrophe models developed by Risk Frontiers for
bushfire and flood, and a bespoke model developed by Essential Energy and reviewed by KPMG for
windstorm was used in this analysis.

The chart below depicts the data flow climate projections.

Output

Data

Calculation

Legend Chart 1
Flow Diagram 
for Climate 
Projections

The Coupled Model Intercomparison Project Phase 5 (“CMIP5”) is a collaborative framework
designed to improve knowledge of climate change. Coupled models are computer-based models of
the earth's climate, in which different parts (such as atmosphere, oceans, land, ice) are "coupled"
together, and interact in simulations.

The IPCC simulated the earth’s climate for given RCPs through CMIP5. There are 40 global climate
models (“GCM”) contained in CMIP5. Each of these models would describe GHG emissions,
temperature metrics, along with a comprehensive range of other weather metrics.

The best practice approach to design climate scenarios for a given RCP is to select an ensemble of
models from the 40 GCMs and other available models for the following reasons:

• CMIP5 models have been thoroughly investigated by organisations such as CSIRO and Energy Sector
Climate Information (“ESCI”) project.

• CMIP5 models have been employed by other DNSPs across Australia

• Ensembling models alleviates biases inherent within individual models. Individual climate models such
as those within CMIP5 would exhibit biases as a result of:

• The methodologies employed within the climate models

• Confounding model biases to create assumptions

Further information on each of the bushfire, flood, and wind models is described in the Climate
Projections section of this report.

Climate 
Projections

3 perils
7 scenarios

30k simulations

Global / 
Regional 
Climate 
Models

ESCI
NARCliM

Risk Frontiers 
Models
Bushfire

Flood

Essential 
Energy

Windstorm

Overview Climate Projection Climate Impact Appendices
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Overview of Approach – Direct Impacts

The approach adopted by EE to quantify the physical climate impact uses a MCSM. A series of
calculations were performed 30,000 times per climate hazard and scenario. This emulated the
variability within the climate impact, which allowed EE to assess the potential range of severity and
likelihoods, providing a comprehensive assessment of risk needed to produce a defensible
business case for resilience expenditure to the AER. The chart below depicts the data flow for
direct physical climate impacts.

Climate Projections
3 hazards

7 scenarios
30k simulations

Asset Information
3.9m assets

13 asset classes Asset Vulnerability 
Assumptions

Number of Assets 
exposed to damaging 

conditions

Number of Failed 
Assets

Asset Replacement 
Cost

Labour Cost

Output

Data

Calculation

Legend Chart 2
Flow Diagram 
for Direct 
Physical 
Climate Impact

Direct physical climate impacts are the immediate financial and non-financial consequences to EE
directly due to the occurrence of physical climate hazards such as bushfire, windstorm, and flood.

Data within the direct physical climate impact

There are three key data components required to determine the direct physical climate impacts.

• Climate Projections: this dataset describes the frequency, severity, and location of the physical

climate hazards. This covers three acute hazards (bushfire, windstorm, and flood), across 7

scenarios (current, Representative Concentration Pathway (“RCP”) 4.5 and 8.5 for 2050, 2070,

and 2090). Each combination of hazard, RCP, and time horizon required 30,000 simulated annual

datapoints per unique asset location.

• Asset Information: this data describes the location and asset class for 3.9 million assets scoped

within the analysis. The asset class was crucial to identify the asset vulnerability assumptions

related to the asset. Extensive discussion and data reconciliation was held with different EE data

owners. EE signed off the data as appropriate for this assessment.

• Asset Vulnerability Assumptions: this dataset describes how each asset class would respond

to the acute hazards. At a high level, the assumptions can be summarised as a probability of

failure measure (burn rates, wind failure rate, flood failure rate) and a severity measure (unit rate).

Overview Climate Projection Climate Impact Appendices
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Overview of Approach – Direct Impacts

Calculating the direct physical climate impact

The calculation of physical climate impact begins with matching the climate projections with the
asset information and asset vulnerability assumptions across the 30,000 simulations per scenario.
Calculations are performed stochastically and these are described in the table below.

The table below describes the calculation performed to determine the outputs of the direct physical
climate impact:

Table 3
Direct Physical 
Climate Output 
Calculations

Description of Calculation

N
u

m
b

er
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f 
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• A primary acute hazard metric was sourced from climate/catastrophe modelling specialists for 
each of the acute hazards at the associated asset locations. For example, a bushfire burnt flag 
was mapped to each modelled asset across the 30,000 simulations.

• The approach then mapped the hazard metric to a likelihood of failure assumption. The likelihood 
of failure for each of the hazards varied according to the asset class and hazard combination. 

• The model stochastically determined if the asset failed, based on the likelihood of failure. This 
calculation was performed for all assets, and all hazards, across all simulations.
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• The replacement cost assumption per failed asset was based on the asset class and grossed up 
for unplanned resource constraints.

• For each simulation, the cost of asset replacement was either $0 if the asset had not failed, or the 
replacement value if the asset failed.

La
b

o
u

r 
C

o
st

• The labour cost was calculated as the total restoration time (travel and repair) for all failed assets 
at an assumed wage rate per service crew. This did not account for overheads. This grossed up 
for unplanned resource constraints.

A comprehensive methodology can be found in a separate document titled ‘Essential Energy -
Physical Vulnerability Playbook – 16 December 2022’.

Network De-
energised

Subset of Failed 
Assets Repaired

Subset of De-energised 
Network is Re-energised

Network Completely 
Re-energised

Customer 
Downtime

Customers 
Interrupted

Value of Customer 
Reliability

Customer Data
1.6k feeders

0.9m customers

Summarise 
Results
3 hazards

7 scenarios
22 asset classes

7 key metrics
95 depot

10 percentiles

Neo4J Network 
Connectivity Model

Indirect physical climate impacts are the downstream impacts to EE and its customers as a result of
asset failures due to the occurrence of physical climate hazards such as bushfire, windstorm, and
flood. The chart below depicts the data flow for indirect physical climate impacts.

Output

Data

Calculation

Legend Chart 3
Flow Diagram 
for Indirect 
Physical 
Climate Impact
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Overview of Approach – Indirect Impacts

Data within the indirect physical climate impact

There are two key data components required to determine the indirect physical climate impacts.

• NEO4J Network Connectivity Model: this dataset describes the relationships between assets

with respect to the transmission of electricity. This data was created based on a network

connectivity model developed in NEO4J by EE. The data identifies all of the de-energised

downstream assets, given a specified asset has failed or is de-energised.

• Customer Data: this dataset describes the number of customers within each segment of the

NEO4J model. This information is required to determine the number of customers interrupted

and hence the total customer downtime and value of customer reliability.

Calculating the indirect physical climate impact

The table below describes the calculation performed to determine the outputs of the indirect
physical climate impact:

Description of Calculation
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• De-energised feeders were identified based on where there were failed assets.
• All downstream de-energised feeders were determined by an energy dependency algorithm.
• The customers supported by each de-energised feeder were identified.
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• A prioritisation score was assigned to each feeder that was de-energised, based on EE’s asset 
restoration priorities.

• The total number of service crews deployed to restore failed assets was based on the number of 
total failed assets.

• Each service crew was deployed to the highest priority asset to restore, with travel time, 
restoration time, and working hours within a day considered.

• A feeder was restored when all the failed assets associated with it were restored. This calculation 
assumed that one service crew can restore one asset at a time and the time taken to restore the 
asset was dependent on the asset class and hazard combination.

• The customer downtime was equal to the time since the simulated occurrence of the hazard 
when the feeder was re-energised.

• Electrical switching, as a quick response to restore customers was not modelled.
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ty • The energy at risk and value of customer reliability rate were fixed assumptions.
• The customer downtime for each feeder was multiplied by the total energy at risk and the value 

of customer reliability rate to determine the value of customer reliability.

Table 4
Indirect 
Physical 
Climate Output 
Calculations

A comprehensive methodology can be found in a separate document titled ‘Essential Energy -
Physical Vulnerability Playbook – 16 December 2022’.
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Reliances and Limitations

The modelling has inherent uncertainty and there are limitations in the approach and assumptions in
building and utilising the model. In any modelling, types of uncertainty include, but are not limited
to:

1. Not having the ability to capture every scenario or possible outcomes for many years into the
future.

2. Calibration of the model, while as accurate as possible for each assumption, there is a limitation
of historical data availability and applicability.

3. Asset classes that span large areas / distances such as conductors have been modelled as a
point asset, based on the mid-point of the area.

4. The model results were a point in time estimate based on today’s current portfolio of assets. The
only exception is the model assumed that poles were to be replaced by a new pole of the same
material once they reach 75 years of age.

The scope of the physical risk modelling included modelling of the following natural hazards:Description of Calculation

B
u

sh
fi

re

Inclusions:
• The bushfire / grassfire hazard model simulated fire footprints, where bushfire ignitions / starts 

captured all possible sources.

Exclusions / Approach Assumptions:
• The model assumed that service crews would be able to access the failed asset after a time to 

allow for the bushfire to subside. The time was assumed to be proportional to the total burn area 
within a location, up to a maximum of 3 days.

• The model does not account for different characteristics of a bushfire / grassfire such as intensity 
or height. These measures have been broadly captured with a Forest Fire Danger Index (“FFDI”) 
to impact the asset burn rates.

• The model does not account for costs associated with bushfire liability. This is the liability to EE 
for starting a bushfire, which would result in additional costs such as residential, commercial, and 
industrial property damage, business interruption, personal injury, and loss of life.

Fl
o

o
d

Inclusions:
• The flood hazard model simulated damage to assets exposed to flood depths from water levels 

rising within a river system.

Exclusions / Approach Assumptions:
• The model does not account for moving debris within flood waters.
• The model does not account for flash flooding.
• The model does not account for coastal inundation.
• The model does not account for impacts to asset life due to exposure to flood waters.
• The model assumed that service crews would be able to access failed assets after a time for the 

flood to recede. The time was assumed to be proportional to the flood depth within a location, up 
to a maximum of 3 days.

• The model applied a simplified approach to incorporating future climate into the simulation of 
flood. Flood depths are modelled to change, but the locations and frequency of flood does not. 
This simplified approach will result in an under-estimation of the flood impacts, all else 
being equal.

Table 5
Physical 
Climate Impact 
Inclusions and 
Exclusions
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Reliances and Limitations

Uncertainty

There was uncertainty within the projection of climate metrics and the resulting climate impacts
and financial results.

There was uncertainty related to the damage / failure of each asset class as it was placed under the
damaging forces of either bushfires, floods, or windstorms. The failure curves, burn rates, and flood
depth thresholds were informed by literature review, historical EE events and discussions with EE
asset managers. The windstorm assumptions were informed by external parties and EE experts
who relied on literature review, historical EE data, and historical data sourced from energy
distribution organisations in other countries.

While the analysis performed assessment at an individual asset level, there were uncertainties
within these asset level assessments which, when analysed in aggregate overcome the individual
asset level uncertainty to present a more robust result when assessing the whole portfolio.

Validation Testing

Validation testing provided EE with confidence that the climate impact assessment was producing
results in line with expectations and a quantified understanding of the uncertainty inherent within
modelling real world phenomena such as physical climate risk.

Sensitivity Testing

Sensitivity testing involved changing individual model assumptions to assess the impact on the
overall results. This allowed EE to identify the assumptions that the analysis was most sensitive to.
This analysis informed where the most scrutiny should be applied on the assumption selections and
hence improve the robustness of the assumption setting process.

Convergence Testing

Convergence testing determined the impact of simulation variability on the results informing the
conclusions of the analysis. Convergence testing for EE’s analysis was performed by re-running the
stochastic simulation for each hazard an additional 5 times, to essentially produce 180,000
simulations per hazard. The simulations that informed conclusions needed to be representative of
the 180,000 simulations.

Description of Calculation
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o
rm

Inclusions:
• The windstorm hazard model simulated unique 3s windgusts at each asset location across a 10 

year historical period. The simulations were re-sampled with additional climate escalation factors 
applied.

• The 3s windgust is modelled to cause certain assets to fail.
• The 3s windgust is modelled to damage vegetation, causing vegetation impact to certain assets.

Exclusions / Approach Assumptions:
• The model does not account for soil conditions such as wet / dry soil or soil type.
• The model does not account for vegetation type or height.
• The model does not account for specific vegetation clearance activity.
• The model does not account for the impact of heavy precipitation.
• The model does not account for the impact of thunderstorms / ‘Microcells’. 
• The model does not account for lightning.

Overview Climate Projection Climate Impact Appendices
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Climate Projections – Climate Data

Climate projections were based on the climate datasets recommended in the Electricity Sector
Climate Information (“ESCI”) report. The ESCI report evaluated a range of climate model
simulations for their representation of temperature and rainfall under RCP 4.5 and RCP 8.5
scenarios and recommended a 3-model ensemble. The data produced in the ESCI project was
limited to bias corrected daily maximum and minimum temperature, daily rainfall, and FFDI. For
variables and scenarios outside the ESCI data, alternative simulations were sourced, and bias
corrected.

The datasets used in Climate Impact Assessment were:

• Historical weather data from the European Centre for Medium Range Weather Forecasting
(“ECMWF”) ERA5 and ERA5-Land reanalysis. ERA5-Land provided a comprehensive range of
hourly weather variables on a 0.1x0.1 degree grid, approximately 9km spatial resolution.

• The Australian Bureau of Meteorology (“BOM”) Australian Water Availability Project (“AWAP”)
provided gridded hydrological and temperature data on a 0.05-degree grid (approximately 5km) for
all of Australia.

• ESCI Project evaluated a wide range of simulations from different Regional Climate Models and
Global Climate Models (“RCM-GCM”) combinations. Simulations were bias corrected using
Quantile Mapping for Extremes (“QME”) and evaluated for suitability at representing rainfall and
temperature for two scenarios: RCP 4.5 and RCP 8.5.

• The NSW and ACT Regional Climate Model (“NARCliM”) climate model simulations version 1.5
data were produced as part of a NSW government-led project, providing high resolution climate
change projections across NSW for two scenarios: RCP 4.5 and RCP 8.5. NARCliM1.5 outputs
have been bias corrected using Quantile Mapping.

For RCP 4.5 and RCP 8.5 scenarios, variables which are not part of ESCI climate projections have
been sourced from the NARCliM1.5 ensemble; this includes east coast lows, winds, extreme heat,
and a suite of variables required for Bushfire modelling. NARCliM1.5 winds have been bias
corrected to ERA5 Land.

Climate model data interpretation should only be carried out with full consideration of data
limitations, for example as outlined in the CMSI (2020) report. Three important considerations are:
bias correction; the use of ensembles; and time averaging to account for natural climate variability.
Bias correction accounts for systematic differences between model simulations and observations
and has been applied to all climate model data used in this study. To account for possible errors in
model accuracy the mean output from a minimum of 3 models is used, with the standard deviation
providing an estimate of uncertainty. Projections are also based on a minimum 20-year average to
account for natural (stochastic) variability inherent in the climate system and as simulated by climate
models. Actual future climate experience would exhibit greater variability, i.e. some years would be
worse than the 20 year-average, and some less.

Additional data transformations and models were required to produce the acute climate risk data. A
brief description of the models is in the following sections.

Overview Climate Projection Climate Impact Appendices
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Climate Projections – Bushfire

For bushfire data, Risk Frontiers’ model “FireAUS” was used.

FireAUS is Risk Frontiers’ probabilistic model for bushfire and grassfire losses in Australia. A key
component of the model is to predict fire ignitions for stochastic events using machine learning
models. These models are trained on historical fire ignitions derived from the Moderate Resolution
Imaging Spectroradiometer (“MODIS”) Burned Area product, MCD64A1 Version 6 (2001-2018)
using fire tracking algorithms. Firstly, these fire ignitions are classified into five categories based on
the quantiles of burned area sizes in each state. Two-step supervised machine learning models are
then defined on 1° by 1° grid cells. The first model is used to predict if fires occur in a grid for each
calendar month and, if so, the second model is used to predict the number of fire ignitions for each
burnt area category within that grid. The predictor variables used in these models include grid
locations and climate classifications as well as population-based, environmental and climate
variables. The climate variables for the training data are derived from the National Centers for
Environmental Prediction (“NCEP”) Climate Forecast System Reanalysis (“CFSR”) (1979-2010) and
Climate Forecast System Version 2 (“CFSv2”) (2011-2018) data.

To project changes in fire hazard, fire prediction models from FireAUS were used to to estimate the
ignition parameter changes for different future climate scenarios. All predictors used in the models,
except the climate variables, remain unchanged across historical baseline and future scenarios.
Therefore, the changes in fire ignitions are exclusively caused by changes in climate variables for
each climate change scenario. NARCliM projects were used to derive climate variables for the
ignition projection pertaining to the emission scenarios RCP4.5 and RCP8.5, as outlined previously.

NARCliM climate data are resampled to 1° resolution and bias corrected against the reanalysis data
used for the training dataset. Using these derived climate variables as new input predictors, the
trained fire prediction models are used to estimate the number of fire ignitions for each 1° by 1°
grid for each month. Since the NARCliM dataset are multi-member outputs, the predicted fire
ignition counts are averaged from the models in the RCMs’ ensemble per 1° grid, then averaged
again per future time horizon definition (i.e., 2041-2060 for 2050s and 2081-2099 for 2090s). Ignition
changes for each 20-year period are then calculated as the ratio of the number of fire ignitions for
the reference (1979-2018) to the ignition number for the future periods. These ratios are then used
to sample the events for future climate scenarios from the event catalogue of the current FireAUS
model.

FireAUS comprised 50,000 years of fire footprints, aggregated into individual events based on the
ignition dates and a 7-day time window, under the current climate. The baseline event set for this
project was a 10,000-year sample of the full FireAUS catalogue of events.

Overview Climate Projection Climate Impact Appendices
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Climate Projections – Bushfire

Chart 5 (Right)
Heatmap of 
average count 
of assets within 
a simulated 
bushfire 
footprint for 
Baseline 
conditions

The Baseline simulation of bushfire events shows a concentration of number of assets at risk on
the Mid North Coast. The service depot with the highest average number of assets exposed to a
bushfire is Port Macquarie, followed by Ballina, Taree, and Kempsey. The total average number of
assets exposed to bushfire across scenarios are summarised in the table below:

Table 6
Average 
number of 
assets exposed 
to bushfire per 
year under 
Baseline 
conditions and 
future scenarios

The number of EE assets exposed to a bushfire is forecast to increase over time for both RCP4.5
and RCP 8.5. Furthermore the associated FFDIs are projected to be more severe, which is modelled
to increase the likelihood of an asset failing due to Bushfire. The table below illustrates the change
in proportion of simulated assets exposed to bushfire footprints by FFDI.

Proportion of simulated assets in a bushfire footprint by FFDI % Change from Baseline

Year Baseline 2050 2070 2090 2050 2070 2090

RCP4.5 (Low-High) 62.1% 55.2% 47.4% 41.3% -11.1% -23.6% -33.4%

RCP4.5 (V High-Severe) 37.6% 43.9% 51.1% 56.6% 16.9% 35.9% 50.6%

RCP4.5 (Extreme-
Catastrophic)

0.4% 0.9% 1.5% 2.1% 138.8% 297.2% 450.6%

RCP8.5 (Low-High) 62.1% 44.2% 39.0% 33.4% -28.7% -37.1% -46.1%

RCP8.5 (V High-Severe) 37.6% 53.7% 57.6% 59.6% 43.0% 53.4% 58.7%

RCP8.5 (Extreme-
Catastrophic)

0.4% 2.0% 3.3% 6.9% 434.2% >500% >500%

Table 7
Proportion of 
assets within a 
bushfire with 
FFDI 
classifications 
per year under 
Baseline 
conditions and 
future scenarios

Average Number of Assets in a Bushfire Footprint % Change from Baseline

Year Baseline 2050 2070 2090 2050 2070 2090

RCP4.5 6,226 6,871 7,627 8,516 10% 23% 37%

RCP8.5 6,226 8,131 8,921 9,770 31% 43% 57%
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Chart 4 (Left)
Heatmap of 
average count 
of annual 
simulated 
bushfires for 
Baseline 
conditions

The FireAUS simulations created 30,000 years of bushfire footprints across the EE service area. The
average number of bushfires across the 30,000 simulation years with Baseline conditions, and the
average count of assets within these bushfire footprints, are illustrated in the charts below.
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The number of EE assets exposed to a bushfire is forecast to increase over time for both RCP4.5
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Climate Projections – Flood

For flood data, Risk Frontiers’ “FloodAUS” was used.

FloodAUS is based on the National Flood Information Database (“NFID”) and generates residential,
commercial, and industrial loss estimates for regions covered by these data sources. The scope of
the model is further extended by using Risk Frontiers Flood Exclusion Zone (“FEZ”) methodology to
filter out address which do not generate losses. FloodAUS covers a majority of the most flood-
prone addresses in Australia.

In this analysis, a synthetic event set in FloodAUS was used to assess the flood risk for current and
future climate. This event set has 50,000 simulation years and synthetic events are defined for
basins and depths are derived from NFID. Since depth information from NFID are attached to the
Geocoded National Address File (“G-NAF”) dataset, the flood depths were estimated at an asset
based on the G-NAF points within 100m of that asset.

Chart 7 (right)
Heatmap of 
average count 
of assets within 
a simulated 
“>0m” flood 
footprint for 
Baseline 
conditions

The Baseline simulation of flood events shows a concentration of number of assets at risk on the
Mid North Coast. The service depot with the highest average number of assets at risk to a Flood is
Taree, followed by Albury, Port Macquarie, Ballina, and Maclean. The total average number of
assets exposed to flood above 1m and 4m across scenarios are summarised in the table below:

Average # of Assets Exposed % Change from Baseline

Year Baseline 2050 2070 2090 2050 2070 2090

RCP4.5 (1m) 594 613 619 623 3% 4% 5%

RCP4.5 (4m) 72 78 80 81 8% 11% 13%

RCP8.5 (1m) 594 622 646 666 5% 9% 12%

RCP8.5 (4m) 72 82 90 97 14% 25% 35%

The number of EE assets exposed to a 1m flood are forecast to increase over time for both RCP4.5
and RCP 8.5. The percentage increase is more significant for higher flood depths.

Table 8
Average 
number of 
assets exposed 
to a 1m and 4m 
flood per year 
under Baseline 
conditions and 
future scenarios
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Chart 6 (left)
Heatmap of 
average 
number of 
annual flood 
events for 
Baseline 
conditions. 

The FloodAUS simulations created 30,000 years of flood footprints across the EE service area. The
average count of flood events across the 30,000 simulation years with Baseline conditions, and the
average number of assets within these flood footprints are illustrated in the charts below.
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Climate Projections – Windstorm

For windstorm data, a Generalised Additive Model (“GAM”) was used to simulate maximum 3s
windgusts at each pole location based on the following independent variables: Distance to coast,
Altitude, Slope and Aspect

The residuals (model vs historical difference) of the GAM were modelled using a Kriging model,
which is a regression based on the residuals at each pole location. Kriging assumes that the
distance or direction between sample points reflects a spatial correlation that can be used to
explain variation in the surface. Literature review has shown the Kriging to be an accurate
interpolation method to predicting climatic variables5.

Reference 5: M. Keskin, K. Ozdogu, ‘Comparison of Interpolation Methods for Meteorological Data’, 2011, Accessed 8 November 2022 

The windstorm simulations created 30,000 years of windgusts across the EE service area. The
average count of high wind days (with maximum wind gusts above 90km/h6 across the 30,000
simulation years with Baseline conditions, and the average number of assets exposed to 90km/h
wind gusts in these same conditions are illustrated in the chart below.

Chart 9 (right)
Heatmap of 
average count 
of assets 
exposed to a 
90km/h 
windgust for 
Baseline 
conditions

The Baseline simulation of 90km/h windstorm events shows a wider spread of risk across the
network relative to the other hazards. The service depot with the highest average number of assets
exposed to a 90km/h windstorm is Bega, followed by Broken Hill, Lismore, and Murwillumbah. The
total average number of assets exposed to 90km/h wind across scenarios are summarised below:

Table 9
Average 
number of 
assets exposed 
to 90km/h 
windgust per 
year under 
Baseline 
conditions and 
future scenarios

Reference 6: Australian Bureau of Meteorology, ‘Other Types of Severe Weather’, [No Date], Accessed 8 November 2022

The number of assets increases to 2050, then reduce in 2070 etc. This is driven by natural variability
modelled such as the El Niño–Southern Oscillation (“ENSO”).

Average Number of Assets Exposed to 90km/h Windgusts % Change from Base

Year Baseline 2050 2070 2090 2050 2070 2090

RCP4.5 118,390 189,520 155,370 172,267 60% 31% 46%

RCP8.5 118,390 208,951 157,083 166,540 76% 33% 41%
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Impact Analysis - Introduction

The Impact analysis modelled the effect of the climate forecasts on EE’s asset portfolio and the
provision of electricity to its customers. The impact can be summarised into a few key components,
such as:

• Number of EE assets that fail directly due to bushfire, flood, or windstorm

• Financial cost to EE to restore the failed assets. The financial cost is comprised of:

• Asset replacement costs

• Labour cost

• The total number of customers interrupted and the duration of interruption. This informed the
value of customer reliability.

The impact analysis section is presented in accordance with each of these components with the
addition of combining all hazards. Any key observations regarding specific hazards are highlighted
within the relevant sections of the analysis.

Overview Climate Projection Climate Impact Appendices
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Impact Analysis – Asset Failure Count

The chart below shows the number of asset failures across percentiles for the Baseline scenario
split by hazard. A black dot is used to represent asset failures in 2070 under RCP 4.5 for all hazards
combined, while the % is the movement between Baseline and 2070 for combined hazards.

EE asset failures (requiring replacement) were forecast to be highest for Bushfire risk (491). The
driver of the most severe events for asset failures is Bushfire, followed by Flood. The black dots
show the total increase of asset failures for all hazards 2070 under RCP4.5. On average, there is a
20% increase in the number of asset failures:

• Bushfire and Windstorm asset failure count were modelled to increase by 24% and 26%

• Flood asset failure was modelled to moderately increase by 4%

The rate of change for asset failure count by hazard varied across RCP and time horizon. The table
below shows the number of expected asset failures by hazard over time for the two RCPs.

Chart 10
Expected 
number of 
failed assets by 
hazard and 
likelihood 
percentile 
under Baseline 
and 2070 under 
RCP4.5

Table 10
Expected 
number of 
failed assets by 
hazard by RCP 
and time 
horizon.

The rate of change for asset failures is most severe for Bushfire, followed by Windstorm and Flood.
However, a limitation of the Flood model was that flood depths are modelled to change, but the
locations and frequency of flood was not. The impact of changes to location and frequency is
expected to increase the rate of change.
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Average Number of Asset Failures % Change from Baseline

Scenario Hazard Baseline 2050 2070 2090 2050 2070 2090

RCP4.5

Bushfire 491 545 610 685 11% 24% 40%

Flood 248 255 257 259 3% 4% 4%

Windstorm 318 550 400 426 73% 26% 34%

RCP8.5

Bushfire 491 654 730 861 33% 49% 75%

Flood 248 258 267 274 4% 8% 10%

Windstorm 318 573 393 406 80% 24% 28%
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Impact Analysis – Asset Failure Count

The chart to the right shows the expected
number of asset failures for the Baseline
scenario due to bushfire. There is a
concentration of asset failures on the Mid
North Coast and a moderate spread of asset
failures on the east of NSW.

Chart 11
Expected 
number of 
failed assets 
due to Bushfire 
under Baseline

Chart 12
Expected 
number of 
failed assets 
due to Flood 
under Baseline

The chart to the left shows the expected
number of asset failures for the Baseline
scenario due to flood. There is a
concentration of asset failures on the Mid
North Coast.

The chart to the right shows the expected
number of asset failures for the Baseline
scenario due to windstorm. There is some
concentration of asset failures on the East
coast of NSW, which is driven by higher
wind gusts and a heavier density of
vegetation compared to the West. There is
also some concentration of asset failures to
the West of NSW, which is driven by longer
conductor lengths, which are more exposed
to vegetation.

Chart 13
Expected 
number of 
failed assets 
due to 
Windstorm 
under Baseline
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Impact Analysis – Asset Failure Count

The exhibit to the left shows the
expected asset failures by hazard for
the top 10 depots. Taree was
modelled to have the highest number
of failed assets. Port Macquarie,
Ballina and Coffs Harbour were
modelled to have the highest
percentage increase of the top 10
service depots, which was driven by
Bushfire.

Chart 16
Expected 
number of 
failed assets 
per customer 
by hazard for 
the top 10 
service depots 
under Baseline 
and 2070 under 
RCP4.5

Chart 14
Expected 
number of 
failed assets 
due to all 
hazards 
combined 
under Baseline

The chart to the right shows the expected
number of asset failures for the Baseline
scenario for all hazards combined. The
heatmap is driven by the modelled Bushfire
asset failures.
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Chart 15
Expected 
number of 
failed assets by 
hazard for the 
top 10 service 
depots under 
Baseline and 
2070 under 
RCP4.5
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The modelled increases to number of
asset failures by 2070 under RCP4.5
were varied across regions, between
-3% and 35% for the top 10 depots.
The large increases were driven by
Bushfire risk for Coffs Harbour and
Port Macquarie.

Lismore shows a decrease due to a
forecast decrease in wind escalations
factors for Lismore derived from
global climate models.

Bulahdelah was modelled to have the highest number of asset failures per customer which was
driven by Windstorm. This was due to the proportion of private conductors within Bulahdelah
relative to other depots.
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Impact Analysis – Total Financial Costs

To summarise the total financial costs to Essential Energy due to the modelled impacts of bushfire,
flood, and windstorm, direct financial costs are added to the VCR impact.

The exhibit below shows the modelled total financial costs across different percentiles by hazard. A
black dot is used to represent direct financial costs in 2070 under RCP 4.5 for all hazards combined,
while the % is the movement between Baseline and 2070 for combined hazards.

Bushfire and Flood were modelled to be broadly equally responsible for the VCR on the expected
case. Bushfire tail events resulted in a large number of asset failures, while Flood tail events
resulted in the failure of expensive zone substations. There is a 17% increase in the expected total
financial costs:

• Bushfire and Windstorm total financial costs were both modelled to increase materially by
26%

• Flood total financial costs was modelled to increase by 5%

The rate of change for total financial cost by hazard varied across RCP and time horizon. The table
below shows the total financial cost by hazard over time for the two RCPs.

Chart 17
Total financial 
costs by hazard 
and likelihood 
percentile 
under Baseline 
and 2070 under 
RCP4.5
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Average Total Financial Costs ($m) % Change from Baseline

Scenario Hazard Baseline 2050 2070 2090 2050 2070 2090

RCP4.5

Bushfire 11.2 12.6 14.1 15.9 13% 26% 42%

Flood 10.2 10.5 10.6 10.7 4% 5% 5%

Windstorm 3.4 5.8 4.3 4.6 69% 26% 33%

RCP8.5

Bushfire 11.2 15.2 17.0 19.5 37% 52% 75%

Flood 10.2 10.7 11.1 11.4 5% 9% 12%

Windstorm 3.4 6.0 4.3 4.3 74% 25% 27%

Table 11
Expected total 
financial costs 
by hazard by 
RCP and time 
horizon.

The rate of change for total financial cost is most severe for Bushfire, followed by Windstorm and
Flood. However, a limitation of the Flood model was that flood depths were modelled to change,
but the locations and frequency of flood was not. The impact of changes to location and frequency
is expected to increase the rate of change.

Overview Climate Projection Climate Impact Appendices
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Impact Analysis – Total Financial Costs

The chart to the right shows the expected
total financial costs for the Baseline scenario
due to bushfire. There is a concentration of
total financial cost on the Mid North Coast
and some moderate concentration in Leeton
and Wagga Wagga. This metric is aligned
with the modelled asset failures.

Chart 18
Expected total 
financial costs 
due to Bushfire 
under Baseline

Chart 19
Expected total 
financial costs 
due to Flood 
under Baseline

The chart to the left shows the expected
total financial costs for the Baseline scenario
due to flood. There is a concentration of
total financial cost on the Mid North Coast
and North Coast. This metric is aligned with
the modelled asset failures.

The chart to the right shows the expected
total financial costs for the Baseline scenario
due to windstorm. There is a concentration
of total financial cost in Bega,

Chart 20
Expected total 
financial costs 
due to 
Windstorm 
under Baseline
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Impact Analysis – Total Financial Costs

Chart 23
Total financial 
costs per 
customer by 
hazard and 
likelihood 
percentile 
under Baseline 
and 2070 under 
RCP4.5

Chart 21
Expected total 
financial costs 
due to all 
hazards 
combined 
under Baseline

The chart to the right shows the expected
total financial costs for the Baseline scenario
for all hazards combined. The heatmap is
driven by the modelled Bushfire and Flood
asset failures.
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Chart 22
Total financial 
costs by hazard 
for the top 10 
service depots 
under Baseline 
and 2070 under 
RCP4.5
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The exhibit to the left shows the
expected total financial costs by
hazard for the top 10 depots. Taree
was modelled to have the highest
total financial cost. Nambucca Heads,
Port Macquarie, and Coffs Harbour
were modelled to have the highest
percentage increase of the top 10
service depots, driven by Bushfire.

Overview Climate Projection Climate Impact Appendices

The modelled increases to total
financial cost by 2070 under RCP4.5
were varied across regions, between
-3% and 32% for the top 10 regions.
The large increases were driven by
Bushfire risk for Nambucca Heads
and Port Macquarie.

Murwillumbah shows a decrease due
to a forecast decrease in wind
escalations factors for Murwillumbah
derived from global climate models.

Maclean was modelled to have the highest total financial cost per customer which was driven by
Flood.
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Impact Analysis – Direct Financial Costs

Direct financial costs were modelled to take effect following asset failures. These costs
corresponded to asset replacement and labour cost. The graph below shows the total direct
financial costs across percentiles for the Baseline scenario by hazard. A black dot is used to
represent direct financial costs in 2070 under RCP 4.5 for all hazards combined, while the % is the
movement between Baseline and 2070 for combined hazards.

EE direct financial costs were forecast to be highest for Bushfire risk. The driver of the most severe
events for asset failures is Bushfire, but followed by Flood due to the potential costs related to zone
substations. There is a 18% increase in the expected direct financial costs:

• Bushfire and Windstorm direct costs were modelled to increase materially by 25% and 26%

• Flood direct costs was modelled to increase by 4%

The rate of change for direct financial cost by hazard varied across RCP and time horizon. The table
below shows the direct financial cost by hazard over time for the two RCPs.

Chart 24
Direct financial 
costs by hazard 
and likelihood 
percentile 
under Baseline 
and 2070 under 
RCP4.5
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Average Direct Financial Costs ($m) % Change from Baseline

Scenario Hazard Baseline 2050 2070 2090 2050 2070 2090

RCP4.5

Bushfire 5.7 6.3 7.0 7.9 11% 25% 40%

Flood 4.6 4.8 4.8 4.8 3% 4% 4%

Windstorm 3.0 5.1 3.7 4.0 72% 26% 34%

RCP8.5

Bushfire 5.7 7.6 8.4 9.8 34% 49% 73%

Flood 4.6 4.8 5.0 5.1 4% 8% 10%

Windstorm 3.0 5.3 3.7 3.8 79% 24% 27%

Table 12
Expected direct 
financial costs 
by hazard by 
RCP and time 
horizon.

The rate of change for direct financial cost is most severe for Bushfire, followed by Windstorm and 
Flood. However, a limitation of the Flood model was that flood depths are modelled to change, but 
the locations and frequency of flood was not. The impact of changes to location and frequency is 
expected to increase the rate of change.
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Impact Analysis – Direct Financial Costs

The chart to the right shows the expected 
direct financial costs for the Baseline 
scenario due to bushfire. There is a 
concentration of asset failures on the Mid 
North Coast and a moderate spread of asset 
failures across the east of NSW. This metric 
is aligned with the modelled asset failures.

Chart 25
Expected direct 
financial costs 
due to Bushfire 
under Baseline

Chart 26
Expected direct 
financial costs 
due to Flood 
under Baseline

The chart to the left shows the expected 
direct financial costs for the Baseline 
scenario due to flood. There is a 
concentration of asset failures on the Mid 
North Coast. This metric is aligned with the 
modelled asset failures.

The chart to the right shows the expected 
direct financial costs for the Baseline 
scenario due to windstorm. There is some 
concentration of asset failures on the East 
coast of NSW, which is driven by higher 
wind gusts and a heavier density of 
vegetation compared to the West. There is 
also some concentration of asset failures to 
the West of NSW, which is driven by longer 
conductor lengths, which are more exposed 
to vegetation. This metric is aligned with the 
modelled asset failures.

Chart 27
Expected direct 
financial costs 
due to 
Windstorm 
under Baseline
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Impact Analysis – Direct Financial Costs

Chart 30
Direct financial 
costs per 
customer by 
hazard and 
likelihood 
percentile 
under Baseline 
and 2070 under 
RCP4.5

Chart 28
Expected direct 
financial costs 
due to all 
hazards 
combined 
under Baseline

The chart to the right shows the expected 
direct financial costs for the Baseline 
scenario for all hazards combined. The 
heatmap is driven by the Bushfire and Flood 
asset failures.
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Chart 29
Expected direct 
financial costs 
by hazard for 
the top 10 
service depots 
under Baseline 
and 2070 under 
RCP4.5
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The exhibit to the left shows the
direct financial costs by hazard for the
top 10 depots. Taree was modelled
to have the highest direct costs. Port
Macquarie and Ballina were modelled
to have the highest percentage
increase of the top 10 service depots,
driven by Bushfire.

Overview Climate Projection Climate Impact Appendices

The modelled increases to direct
financial costs by 2070 under RCP4.5
were varied across regions, between
-9% and 33% for the top 10 regions.
The large increases were driven by
Bushfire risk for Port Macquarie and
Ballina.

Murwillumbah shows a decrease due
to a forecast decrease in wind
escalations factors for Murwillumbah
derived from global climate models.

Maclean was modelled to have the highest total financial cost per customer which was driven by
Flood.
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Impact Analysis – Value of Customer Reliability

The value of customer reliability was estimated using a fixed estimate for energy at risk and value 
of customer reliability (“VCR”) rate. The result is proportional to the total customer downtime.

The exhibit below shows the modelled VCR across different percentiles by hazard. A black dot is 
used to represent VCR in 2070 under RCP 4.5 for all hazards combined, while the % is the 
movement between Baseline and 2070 for combined hazards.

Bushfire and Flood were modelled to be broadly equally responsible for the VCR on the expected
case, but Bushfire drove the tail events. VCR is driven by waiting time for service crews to
complete the restoration of an asset before tending to another. Windstorm asset failure rates are
very low and hence failures were not modelled to occur as localised concentrations, hence
windstorm VCR is relatively low compared to Bushfire and Flood. There is a 18% increase in the
expected VCR:

• Bushfire and Windstorm VCR were modelled to increase materially by 28% and 34%

• Flood VCR was modelled to increase by 5%

The rate of change for VCR impact by hazard varied across RCP and time horizon. The table below
shows the VCR impact by hazard over time for the two RCPs.

Chart 31
Value of 
Customer 
Reliability by 
hazard and 
likelihood 
percentile 
under Baseline 
and 2070 under 
RCP4.5
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Average VCR ($m) % Change from Baseline

Scenario Hazard Baseline 2050 2070 2090 2050 2070 2090

RCP4.5

Bushfire 5.5 6.3 7.1 8.0 15% 28% 45%

Flood 5.5 5.8 5.8 5.9 4% 5% 6%

Windstorm 0.1 0.2 0.1 0.2 80% 34% 45%

RCP8.5

Bushfire 5.5 7.7 8.5 9.8 39% 55% 78%

Flood 5.5 5.9 6.1 6.3 6% 10% 14%

Windstorm 0.1 0.2 0.1 0.1 89% 32% 43%

Table 13
Expected VCR 
impact by 
hazard by RCP 
and time 
horizon.

The rate of change for VCR is most severe for Bushfire, followed by Windstorm and Flood. 
However, a limitation of the Flood model was that flood depths are modelled to change, but the 
locations and frequency of flood was not. The impact of changes to location and frequency is 
expected to increase the rate of change.
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Impact Analysis – Value of Customer Reliability

The chart to the right shows the expected 
VCR impact for the Baseline scenario due to 
bushfire. There is a concentration of asset 
failures on the Mid North Coast and 
generally a moderate spread of VCR impact 
across the east of NSW. This metric is 
aligned with the modelled asset failures.

Chart 32
Expected value 
of customer 
reliability due to 
Bushfire under 
Baseline

Chart 33
Expected value 
of customer 
reliability due to 
Flood under 
Baseline

The chart to the left shows the expected 
VCR impact for the Baseline scenario due to 
flood. There is a concentration of VCR 
impact on the Mid North Coast and North 
Coast. This metric is aligned with the 
modelled asset failures.

The chart to the right shows the expected 
VCR impact for the Baseline scenario due to 
windstorm. There are high risk depots such 
as Bega, Leeton, and Nambucca heads, 
which are location in different regions. This 
demonstrates how windstorm risk has a 
wider spread of risk than bushfire or flood.

Chart 34
Expected value 
of customer 
reliability due to 
Windstorm 
under Baseline
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Impact Analysis – Value of Customer Reliability

Chart 37
Value of 
Customer 
Reliability per 
customer by 
hazard and 
likelihood 
percentile 
under Baseline 
and 2070 under 
RCP4.5

Chart 35
Expected value 
of customer 
reliability due to 
all hazards 
combined 
under Baseline

The chart to the right shows the expected 
VCR impact for the Baseline scenario for all 
hazards combined. The heatmap is driven by 
the modelled Bushfire and Flood asset 
failures.
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Chart 36
Value of 
Customer 
Reliability by 
hazard for the 
top 10 service 
depots under 
Baseline and 
2070 under 
RCP4.5
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) The exhibit to the left shows the 

expected VCR impact by hazard for 
the top 10 depots. Maclean was 
modelled to have the highest VCR, 
driven by Flood. Inverell, Port 
Macquarie and Nambucca Heads 
have the highest percentage increase 
of the top 10 depots, driven by 
Bushfire.

Overview Climate Projection Climate Impact Appendices

The modelled increases to value of
customer reliability by 2070 under
RCP4.5 were varied across regions,
between 2% and 38% for the top 10
depots. The large increases were
driven by Bushfire risk for Inverell,
Port Macquarie, and Nambucca
Heads.

Maclean was modelled to have the highest VCR per customer, driven by Flood. When a flood event
occurred in Maclean, a very large number of cubicles were at risk of failure. This resulted in long
wait times. For example, a 98th percentile event was modelled to cause an expected 409 cubicle
failures in Baseline.



Commercial-in-confidence36 Essential Energy | Climate Impact Assessment 2022

Impact Analysis – Customer Interruptions

Customer interruptions were captured as non-financial impacts. A customer was modelled to 
experience an interruption where an asset failure occurred on or upstream of their feeder.

The exhibit below shows the modelled number of interruptions across different percentiles by 
hazard. A black dot is used to represent customer interruptions in 2070 under RCP 4.5 for all 
hazards combined, while the % is the movement between Baseline and 2070 for combined 
hazards.

Bushfire was modelled to be responsible for the most interruptions on average and this was also
true for the most severe events, along with Windstorm. There is a 18% increase in the expected
customers interrupted:

• Bushfire and Windstorm customers interrupted were modelled to increase materially by 28%
and 27%

• Flood customers interrupted was modelled to increase by 2%

The rate of change for customers interrupted by hazard varied across RCP and time horizon. The
table below shows the customers interrupted by hazard over time for the two RCPs.

Chart 38
Customer 
interruptions by 
hazard and 
likelihood 
percentile 
under Baseline 
and 2070 under 
RCP4.5
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Average Customers Interrupted (‘000’) % Change from Baseline

Scenario Hazard Baseline 2050 2070 2090 2050 2070 2090

RCP4.5

Bushfire 1.1 1.2 1.4 1.5 15% 28% 43%

Flood 0.9 0.9 0.9 0.9 2% 2% 3%

Windstorm 0.4 0.7 0.5 0.6 62% 27% 38%

RCP8.5

Bushfire 1.1 1.5 1.6 1.8 37% 51% 69%

Flood 0.9 0.9 0.9 0.9 3% 5% 7%

Windstorm 0.4 0.7 0.5 0.6 68% 28% 37%

Table 14
Expected 
customers 
interrupted by 
hazard by RCP 
and time 
horizon.

The rate of change for customers interrupted is most severe for Bushfire, followed by Windstorm 
and Flood. However, a limitation of the Flood model was that flood depths are modelled to change, 
but the locations and frequency of flood was not. The impact of changes to location and frequency 
is expected to increase the rate of change.

Overview Climate Projection Climate Impact Appendices
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Impact Analysis – Customer Interruptions

The chart to the right shows the expected 
customer interruptions for the Baseline 
scenario due to bushfire. There is a 
concentration of customer interruptions on 
the Mid North Coast and a moderate spread 
of customer interruptions across the east of 
NSW. This metric reflects the asset failures, 
network energy dependency and where 
customers are located.

Chart 39
Expected 
customer 
interruptions 
due to Bushfire 
under Baseline

Chart 40
Expected 
customer 
interruptions 
due to Flood 
under Baseline

The chart to the left shows the expected 
customer interruptions for the Baseline 
scenario due to flood. There is a 
concentration of customer interruptions on 
the Mid North Coast and North Coast. This 
metric reflects the asset failures, network 
energy dependency and where customers 
are located.

The chart to the right shows the expected 
customer interruptions for the Baseline 
scenario due to windstorm. There are high 
risk depots such as Bega, Leeton, and 
Nambucca heads, which are location in 
different regions. This is aligned with the 
spread of risk for VCR. This metric reflects 
the asset failures, network energy 
dependency and where customers are 
located.

Chart 41
Expected 
customer 
interruptions 
due to 
Windstorm 
under Baseline
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Impact Analysis – Customer Interruptions

Chart 44
Customer 
interruptions 
per customer 
by hazard and 
likelihood 
percentile 
under Baseline 
and 2070 under 
RCP4.5

Chart 42
Expected 
customer 
interruptions 
due to all 
hazards 
combined 
under Baseline

The chart to the right shows the expected 
customer interruptions for the Baseline 
scenario for all hazards combined. The 
heatmap is driven by the modelled bushfire 
asset failures.
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Chart 43
Customer 
interruptions by 
hazard for the 
top 10 service 
depots under 
Baseline and 
2070 under 
RCP4.5

C
U

S
TO

M
E

R
S

IN
T

E
R

R
U

P
T

E
D

 (
‘0

00
’)

The exhibit to the left shows the 
expected customer interruptions by 
hazard for the top 10 depots. Port 
Macquarie was modelled to have the 
highest number of customers 
interrupted, driven by Bushfire. 
Inverell and Port Macquarie were 
modelled to have the highest 
percentage increase of the top 10 
service depots, driven by Bushfire.

Overview Climate Projection Climate Impact Appendices

The modelled increases to customer
interruptions by 2070 under RCP4.5
were varied across regions, between
-2% and 36% for the top 10 regions.
The large increases were driven by
Bushfire risk for Inverell and Port
Macquarie.

Guyra was modelled to have the highest interruptions per customer. However, further investigation
showed this was caused by a data limitation on a long private conductor. No manual amendments
were made for the data limitation, except for Bulahdelah. Maclean was modelled to have the
second highest interruptions per customer which was driven by Flood.
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Impact Analysis – Customer Downtime

Customer downtime was captured as non-financial impact. A customer was modelled to experience 
downtime where an asset failure occurred on or upstream of their feeder.

The exhibit below shows the modelled duration of downtime across different percentiles by hazard. 
A black dot is used to represent aggregate customer downtime in 2070 under RCP 4.5 for all 
hazards combined, while the % is the movement between Baseline and 2070 for combined 
hazards.

Bushfire was modelled to be responsible for the most customer downtime on average and this was
also true for the most severe events. This was followed closely by Flood. There is a 17% increase
in the expected customer downtime:

• Bushfire and Windstorm customer downtime were modelled to increase materially by 28%
and 34%

• Flood VCR customer downtime modelled to increase by 5%

The rate of change for customer downtime by hazard varied across RCP and time horizon. The table
below shows the customer downtime by hazard over time for the two RCPs.

Chart 45
Customer 
downtime by 
hazard and 
likelihood 
percentile 
under Baseline 
and 2070 under 
RCP4.5
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Average Total Customers Downtime (‘000’ hrs) % Change from Baseline

Scenario Hazard Baseline 2050 2070 2090 2050 2070 2090

RCP4.5

Bushfire 100.7 116.1 129.2 145.8 15% 28% 45%

Flood 101.2 105.7 106.6 107.5 4% 5% 6%

Windstorm 1.9 3.4 2.6 2.8 80% 34% 45%

RCP8.5

Bushfire 100.7 140.1 156.2 178.8 39% 55% 78%

Flood 101.2 107.4 111.8 115.2 6% 10% 14%

Windstorm 1.9 3.6 2.5 2.7 89% 32% 43%

Table 15
Expected total 
financial costs 
by hazard by 
RCP and time 
horizon.

The rate of change for customers downtime is most severe for Bushfire, followed by Windstorm 
and Flood. However, a limitation of the Flood model was that flood depths are modelled to change, 
but the locations and frequency of flood was not. The impact of changes to location and frequency 
is expected to increase the rate of change.
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Impact Analysis – Customer Downtime

The chart to the right shows the expected 
total customer downtime for the Baseline 
scenario due to bushfire. There is a 
concentration of aggregate customer 
downtime on the Mid North Coast and a 
moderate spread across the east of NSW. 
This metric reflects EE’s network energy 
dependency and the asset restoration 
priority.

Chart 46
Expected 
customer 
downtime due 
to Bushfire 
under Baseline

Chart 47
Expected 
customer 
downtime due 
to Flood under 
Baseline

The chart to the left shows the expected 
total customer downtime for the Baseline 
scenario due to flood. There is a 
concentration of aggregate customer 
downtime on the Mid North Coast and 
North Coast. This metric reflects EE’s 
network energy dependency and the asset 
restoration priority.

The chart to the right shows the expected 
total customer downtime for the Baseline 
scenario due to windstorm. There are high 
risk depots such as Bega, Leeton, and 
Nambucca heads, which are location in 
different regions. This is aligned with the 
spread of risk for VCR. This metric reflects 
the asset failures, network energy 
dependency and asset restoration priority.

Chart 48
Expected 
customer 
downtime due 
to Windstorm 
under Baseline
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Impact Analysis – Customer Downtime

Chart 51
Downtime per 
customer by 
hazard and 
likelihood 
percentile 
under Baseline 
and 2070 under 
RCP4.5

Chart 49
Expected 
customer 
downtime due 
to all hazards 
combined 
under Baseline

The chart to the right shows the expected
total customer downtime for the Baseline
scenario for all hazards combined. The
heatmap is driven by the modelled bushfire
asset failures.
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Chart 50
Customer 
downtime by 
hazard for the 
top 10 service 
depots under 
Baseline and 
2070 under 
RCP4.5
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The modelled increases to downtime
per customer by 2070 under RCP4.5
were varied across regions, between
2% and 38% for the top 10 regions.
The large increases were driven by
Bushfire risk for Inverell, Port
Macquarie, and Nambucca Heads.

Overview Climate Projection Climate Impact Appendices

The exhibit to the left shows the
expected customer downtime by
hazard for the top 10 depots.
Maclean was modelled to have the
highest customer downtime, driven
by Flood. Inverell, Port Macquarie and
Nambucca Heads were modelled to
have the highest percentage increase
of the top 10 service depots, driven
by Bushfire.

Maclean was modelled to have the highest downtime per customer, driven by Flood. Inverell, Port
Macquarie and Nambucca Heads were modelled to have the highest percentage increase of the
top 10 service depots, driven by Bushfire.
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Next Steps

Other ways to present outputs

The Impact analysis has been presented primarily as the aggregate result by depot area, which
would support Essential Energy with a defensible business case for resilience expenditure.

There are many ways to present the results of the climate impact assessment, some examples
include:

• Showing each metric on a per asset basis, specific to the asset class

• Showing each metric summarised at a maintenance area granularity

• Showing each metric at specific likelihood percentiles

Framework development

The climate impact assessment is EE’s first attempt at modelling the direct and network impacts
due to bushfire, flood, and windstorm hazards. There has been significant collaboration with KPMG,
who have delivered similar engagements for other DNSPs across Australia, but the area of study for
climate change is rapidly maturing. As such, there is the potential to refine and enhance the
analysis, building up from a robust foundation. Some options have been listed in the table below,
split between new data sources or modelling improvements.

Overview Climate Projection Climate Impact Appendices

Climate Impact Assessment Development Options

Hazard Potential New Data Sources Potential Modelling Improvements

Bushfire
• Other bushfire intensity information, such 

as Fire Behaviour Index.
• Industry asset failure data.

• Incorporate bushfire ignition locations and 
the associated risk of EE assets causing 
said ignition.

• Incorporate fire duration stochastically.

Flood • Asset specific flood depth vulnerabilities.

• Model changes to flood footprints in 
addition to changes in flood depths.

• Model impacts of moving debris within 
flood waters.

• Incorporate flood water subsiding 
stochastically,

Windstorm

• Asset condition reports.
• Soil conditions.
• Vegetation type and height.
• Vegetation clearance activity.
• Asset maintenance activity.

• Modell microburst wind events.
• Model specific vegetation failure and fall 

range.

Table 16
Climate impact 
assessment 
development 
options
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Sensitivity Tests

Sensitivity testing allows EE to understand which assumptions the assessment is most sensitive to
and also sense check that the model is working as intended. The assumptions that are most
sensitive should be given the most scrutiny and justification.

In the tables below, the results of the hazard sensitivity testing on all the output types is
summarised. An arbitrary 10% flex on the burn rate assumptions, 10% flex on flood threshold
depths, and a 1% flex on wind vulnerability curves was applied and commentary was provided on
whether the result is as expected.

Bushfire Sensitivity Results

Assumption Original Burn Probability (+/- 10%)

Failed Assets 491 10% -10%

Total Financial Cost 11,202,428 10% -10%

Direct Financial Cost 5,682,598 10% -10%

Asset Replacement Cost 4,577,549 10% -10%

Labour Cost 1,105,049 10% -10%

Value of Customer Reliability 5,519,830 10% -10%

Customer Interruptions 1,066 6% -6%

Customer Downtime 100,963 10% -10%

Table 17
Bushfire 
sensitivity test 
results

The sensitivity analysis results for burn probabilities are consistent with expectations. The number
of customer interruptions is less sensitive to the burn probabilities, where a 10% increase to burn
rates results in a 6% increase to the number of customers interrupted. This occurs because there
may be multiple asset failures related to a customer interruption.

Flood Sensitivity Results

Assumption Original Flood Thresholds (+/- 10%)

Failed Assets 248 -11% 9%

Total Financial Cost 10,159,316 -9% 8%

Direct Financial Cost 4,630,369 -8% 7%

Asset Replacement Cost 3,791,269 -8% 7%

Labour Cost 839,100 -8% 8%

Value of Customer Reliability 5,528,947 -10% 10%

Customer Interruptions 872 -6% 6%

Customer Downtime 101,129 -10% 10%

Table 18
Flood sensitivity 
test results

The sensitivity analysis results for flood failure threshold depths are consistent with expectations.
The number of customer interruptions is less sensitive to the burn probabilities, where a 10%
increase to flood failure rates results in a 6% increase to the number of customers interrupted. This
occurs because there may be multiple asset failures related to a customer interruption.

Overview Climate Projection Climate Impact Appendices
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Sensitivity Tests

The sensitivity analysis results for windstorm failure probabilities are consistent with expectations.
Most metrics changed by 1% as the wind curves were adjusted by 1%.

Windstorm Sensitivity Results

Assumption Original Wind Curve (+/- 1%)

Failed Assets 317 1% -1%

Total Financial Cost 3,415,905 0% 1%

Direct Financial Cost 2,966,578 1% -1%

Asset Replacement Cost 2,412,972 1% -1%

Labour Cost 553,605 1% -1%

Value of Customer Reliability 449,328 1% -1%

Customer Interruptions 2,201 1% -1%

Customer Downtime 8,219 1% -1%

Table 19
Windstorm 
sensitivity test 
results

Overview Climate Projection Climate Impact Appendices
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Convergence Tests

Convergence testing provides EE with the confidence that the number of simulations were high
enough to reduce the impact of simulation error on the output metrics.

The tables below summarises each hazard model run compared against the average of 5 additional
unique simulation re-runs. The outputs were compared across different results percentiles to
identify if the results have converged over 30,000 simulations.

Each number in the table represents the ratio of the simulated result against the average of a
further 150,000 simulations. A 100% metric indicates that there was no difference in the simulation
compared to the average of a further 150,000 simulations. A variation against the 150,000
simulations of +/- 5% is acceptable

Bushfire Convergence Results

Percentile 90 95 98 99 99.5 99.7 99.8 99.8 99.9
Failed Assets 100% 100% 100% 100% 100% 100% 100% 100% 100%

Total Financial Cost 98% 101% 99% 103% 100% 99% 100% 99% 99%

Direct Financial Cost 96% 103% 100% 108% 101% 98% 100% 99% 99%

Asset Replacement Cost 95% 103% 100% 109% 102% 97% 100% 99% 99%

Labour Cost 100% 100% 100% 100% 100% 100% 100% 100% 100%

Value of Customer Reliability 100% 99% 98% 100% 100% 100% 100% 99% 98%

Customer Interruptions 100% 100% 100% 100% 99% 100% 100% 100% 99%

Customer Downtime 100% 99% 98% 100% 100% 100% 100% 99% 98%

Table 20
Bushfire 
Convergence 
test results

The convergence test results for bushfire show that the simulation run presented within the results
is within -5% and +3% of the average

For the asset replacement metric, the simulation result was 5% lower than the average of a further
150,000 simulations for bushfire at the 90th percentile. This is within an acceptable range of
stochastic volatility. Asset replacement exhibited the most volatility, which was driven by cable
joints.

Flood Convergence Results

Percentile 90 95 98 99 99.5 99.7 99.8 99.8 99.9
Failed Assets 100% 100% 100% 100% 100% 100% 100% 100% 100%

Total Financial Cost 101% 99% 100% 100% 100% 100% 100% 100% 100%

Direct Financial Cost 103% 98% 100% 100% 100% 99% 100% 100% 100%

Asset Replacement Cost 104% 97% 100% 100% 100% 99% 100% 100% 100%

Labour Cost 100% 100% 100% 100% 100% 100% 100% 100% 100%

Value of Customer Reliability 100% 100% 100% 100% 100% 100% 100% 100% 100%

Customer Interruptions 100% 100% 100% 100% 100% 100% 100% 100% 100%

Customer Downtime 100% 100% 100% 100% 100% 100% 100% 100% 100%

Table 21
Flood 
Convergence 
test results

The convergence test results for flood show that the simulation run presented within the results is
within -3% and +4% of the average of the 5 additional model runs. This indicates that the results
converged across the presented percentiles.

Overview Climate Projection Climate Impact Appendices
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Convergence Tests

The table below summarises the windstorm model run compared against the average of 5
additional unique simulation re-runs. The outputs were compared across different results
percentiles to identify if the results have converged over 30,000 simulations. A higher level of
convergence is expected at the lower percentiles.

Overview Climate Projection Climate Impact

Windstorm Convergence Results

Percentile 90 95 98 99 99.5 99.7 99.8 99.8 99.9
Failed Assets 100% 100% 100% 101% 101% 100% 100% 100% 98%

Total Financial Cost 98% 104% 98% 101% 99% 100% 100% 100% 99%

Direct Financial Cost 98% 104% 97% 100% 98% 98% 100% 100% 97%

Asset Replacement Cost 98% 105% 96% 100% 98% 98% 100% 100% 96%

Labour Cost 100% 100% 100% 101% 101% 100% 100% 100% 99%

Value of Customer Reliability 100% 103% 101% 102% 102% 102% 100% 100% 102%

Customer Interruptions 100% 101% 100% 102% 102% 101% 101% 101% 98%

Customer Downtime 100% 103% 101% 102% 102% 102% 100% 100% 102%

Table 22
Windstorm 
Convergence 
test results

The convergence test results for windstorm show that the simulation run presented within the
results is within -4% and +5% of the 5 additional model runs. This indicates that the results
converged across the presented percentiles.

Appendices
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