

17 - 23 June 2018

Introduction

The AER is required to publish the reasons for significant variations between forecast and actual price and is responsible for monitoring activity and behaviour in the National Electricity Market. The Electricity Report forms an important part of this work. The report contains information on significant price variations, movements in the contract market, together with analysis of spot market outcomes and rebidding behaviour. By monitoring activity in these markets, the AER is able to keep up to date with market conditions and identify compliance issues.

Spot market prices

Figure 1 shows the spot prices that occurred in each region during the week 17 - 23 June 2018.

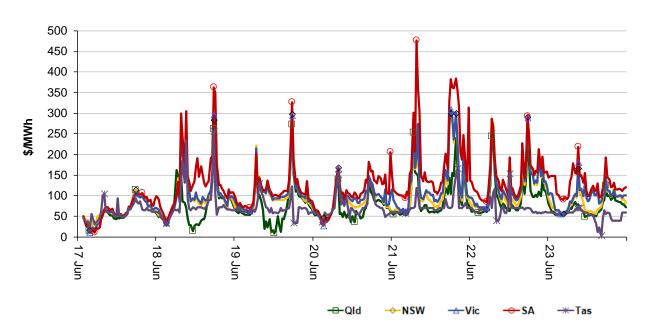


Figure 2 shows the volume weighted average (VWA) prices for the current week (with prices shown in Table 1) and the preceding 12 weeks, as well as the VWA price over the previous 3 financial years.

180 160 140 0 120 П 100 \$/MWh 80 Ж 0 60 Ŷ 40 20 8 Apr 22 Apr 6 May 3 Jun 14/15 FY 29 Apr 27 May Current week 20 May Previous week 15/16 FY 13 May 25 Mai 5 16/17 FY Qld NSW Tas

Figure 2: Volume weighted average spot price by region (\$/MWh)

Table 1: Volume weighted average spot prices by region (\$/MWh)

Region	Qld	NSW	Vic	SA	Tas
Current week	81	102	107	133	69
16-17 financial YTD	103	88	69	123	75
17-18 financial YTD	75	84	99	108	88

Longer-term statistics tracking average spot market prices are available on the AER website.

Spot market price forecast variations

The AER is required under the National Electricity Rules to determine whether there is a significant variation between the forecast spot price published by the Australian Energy Market Operator (AEMO) and the actual spot price and, if there is a variation, state why the AER considers the significant price variation occurred. It is not unusual for there to be significant variations as demand forecasts vary and participants react to changing market conditions. A key focus is whether the actual price differs significantly from the forecast price either four or 12 hours ahead. These timeframes have been chosen as indicative of the time frames within which different technology types may be able to commit (intermediate plant within four hours and slow start plant within 12 hours).

There were 183 trading intervals throughout the week where actual prices varied significantly from forecasts. This compares to the weekly average in 2017 of 185 counts and the average in 2016 of 273. Reasons for the variations for this week are summarised in Table 2. Based on AER analysis, the table summarises (as a percentage) the number of times when the actual price differs significantly from the forecast price four or 12 hours ahead and the major reason for that variation. The reasons are classified as availability (which means that there is a change in the total quantity or price offered for generation), demand forecast inaccuracy, changes to network capability or as a combination of factors (when there is not one dominant reason). An instance where both four and 12 hour ahead forecasts differ significantly from the actual price will be counted as two variations.

Table 2: Reasons for variations between forecast and actual prices

	Availability	Demand	Network	Combination
% of total above forecast	9	32	0	0
% of total below forecast	5	48	0	5

Note: Due to rounding, the total may not be 100 per cent.

Generation and bidding patterns

The AER reviews generator bidding as part of its market monitoring to better understand the drivers behind price variations. Figure 3 to Figure 7 show the total generation dispatched and the amounts of capacity offered within certain price bands for each 30 minute trading interval in each region.

Figure 3: Queensland generation and bidding patterns

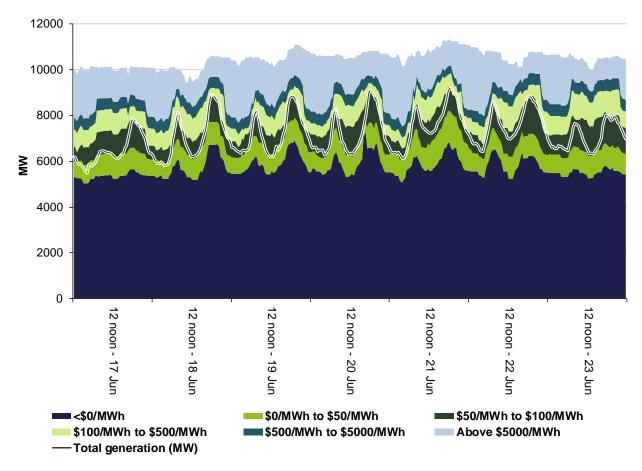


Figure 4: New South Wales generation and bidding patterns



Figure 5: Victoria generation and bidding patterns

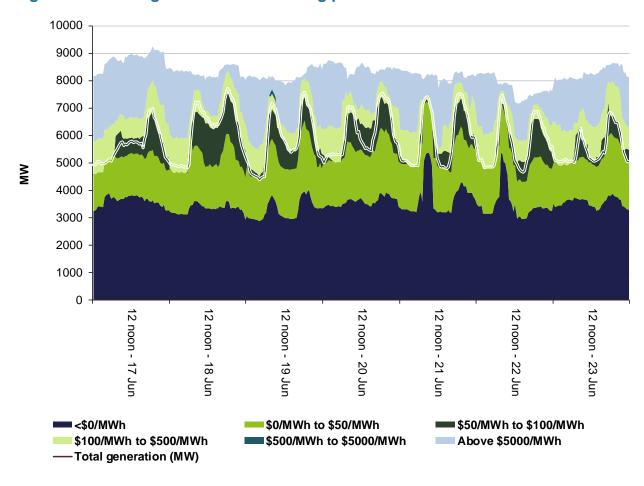


Figure 6: South Australia generation and bidding patterns

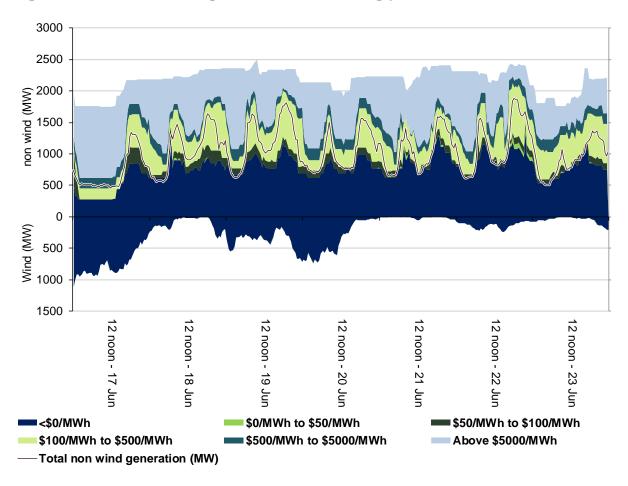
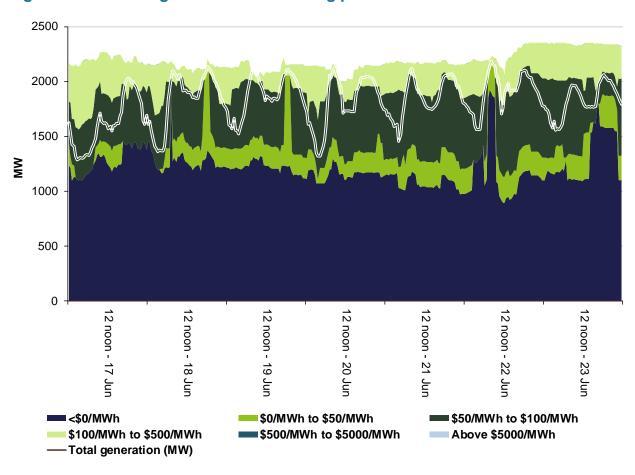



Figure 7: Tasmania generation and bidding patterns

Frequency control ancillary services markets

Frequency control ancillary services (FCAS) are required to maintain the frequency of the power system within the frequency operating standards. Raise and lower regulation services are used to address small fluctuations in frequency, while raise and lower contingency services are used to address larger frequency deviations. There are six contingency services:

- fast services, which arrest a frequency deviation within the first 6 seconds of a contingent event (raise and lower 6 second)
- slow services, which stabilise frequency deviations within 60 seconds of the event (raise and lower 60 second)
- delayed services, which return the frequency to the normal operating band within 5 minutes (raise and lower 5 minute) at which time the five minute dispatch process will take effect.

The Electricity Rules stipulate that generators pay for raise contingency services and customers pay for lower contingency services. Regulation services are paid for on a "causer pays" basis determined every four weeks by AEMO.

The total cost of FCAS on the mainland for the week was \$4 008 500 or around one per cent of energy turnover on the mainland.

The total cost of FCAS in Tasmania for the week was \$155 500 or around one per cent of energy turnover in Tasmania.

Figure 8 shows the daily breakdown of cost for each FCAS for the NEM, as well as the average cost since the beginning of the previous financial year.

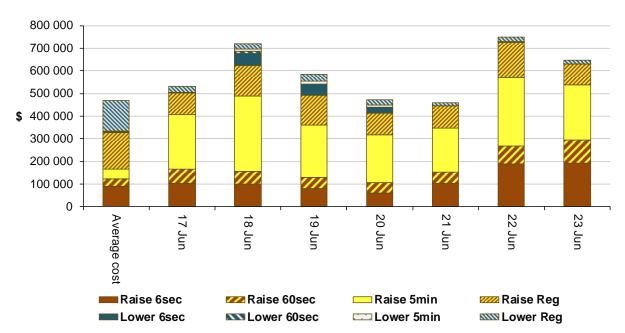


Figure 8: Daily frequency control ancillary service cost

Detailed market analysis of significant price events

Queensland

There were four occasions where the spot price in Queensland was greater than three times the Queensland weekly average price of \$81/MWh and above \$250/MWh.

Monday, 18 June

Table 3: Price, Demand and Availability

Time	Price (\$/MWh)			D	emand (M	(IVV)	Availability (MW)		
	Actual	4 hr forecast	12 hr forecast	Actual	4 hr forecast	12 hr forecast	Actual	4 hr forecast	12 hr forecast
6 pm	261.00	275.94	243.10	8098	7717	7921	10 504	10 356	10 894
6.30 pm	255.71	274.18	274.46	8116	7748	8015	10 516	10 449	10 897

Prices were close to that forecast four hours prior.

Tuesday, 19 June

Table 4: Price, Demand and Availability

Time	Price (\$/MWh)			D	Demand (MW)			Availability (MW)		
	Actual	4 hr	12 hr	Actual	4 hr	12 hr	Actual	4 hr	12 hr	
		forecast	forecast		forecast	forecast		forecast	forecast	
6 pm	272.05	253.72	121.00	7924	7557	7709	10 784	10 945	11 000	

The price was close to that forecast four hours prior.

Thursday, 21 June

Table 5: Price, Demand and Availability

Time	Price (\$/MWh)			D	Demand (MW)			Availability (MW)		
	Actual	4 hr forecast	12 hr forecast	Actual	4 hr forecast	12 hr forecast	Actual	4 hr forecast	12 hr forecast	
7 am	252.14	98.73	113.53	7127	6849	6803	10 565	11 080	10 980	

Conditions at the time saw demand around 280 MW higher than forecast while availability was 515 MW lower than forecast four hours prior.

At 5.48 am CS Energy removed 330 MW of capacity priced less than \$15/MWh at its Kogan Creek power station due to mill limits. At 5.59 am Stanwell delayed the return to full service of Tarong unit 1, removing 140 MW of capacity, 40 MW of which was priced less than \$90/MWh. The reduction in low priced capacity and higher than forecast demand led to dispatch prices ranging between \$160/MWh and \$288/MWh.

South Australia

There was one occasion where the spot price in South Australia was greater than three times the South Australia weekly average price of \$133/MWh and above \$250/MWh.

Thursday, 21 June

Table 6: Price, Demand and Availability

Time	Price (\$/MWh)			D	Demand (MW)			Availability (MW)		
	Actual	4 hr forecast	12 hr forecast	Actual	4 hr forecast	12 hr forecast	Actual	4 hr forecast	12 hr forecast	
8 am	476.51	349.95	210.00	1870	1829	1778	2123	2158	2180	

Demand and availability was close to that forecast four hours prior.

At 7.18 am, effective from 7.35 am, AGL rebid 215 MW priced less than \$210/MWh at Torrens Island to prices greater than \$10 100/MWh. The rebid reason given was 'A~050 chg in aemo pd~demand increase vic 5MPD 7136MW VS PD 6853MW [0800]'. At the start of the trading interval, both interconnectors reached their import limits, preventing cheaper priced generation being sourced from Victoria.

The first two dispatch intervals were priced at \$590/MWh and \$1375/MWh because cheaper priced generation took longer than five minutes to start. From 7.45 am cheaper priced generation was able to set price and the price fell to \$390/MWh and below for remainder of the trading interval.

Tasmania

There was one occasion where the spot price in Tasmania was greater than three times the Tasmania weekly average price of \$69/MWh and above \$250/MWh.

Monday, 18 June

Table 7: Price, Demand and Availability

Time	Price (\$/MWh)			D	Demand (MW)			Availability (MW)		
	Actual	4 hr forecast	12 hr forecast	Actual	4 hr forecast	12 hr forecast	Actual	4 hr forecast	12 hr forecast	
6 pm	256.04	214.98	237.47	1610	1560	1542	2128	2096	2095	

The price was close to that forecast four hours prior.

Financial markets

Figure 9 shows for all mainland regions the prices for base contracts (and total traded quantities for the week) for each quarter for the next four financial years.

150 500 Number of contracts traded 120 400 300 90 \$/MWh 60 200 30 100 0 0 Q2 2020 Q4 2021 Q 4 Q2 2021 Q1 2019 ႘ Q1 2020 ည္သ ō Q2 2018 Q3 2018 Q4 2018 Q2 2019 Q4 2020 Q1 202 Q3 202 2019 . 2019 2020 2022

Figure 9: Quarterly base future prices Q2 2018 - Q1 2022

Source. ASXEnergy.com.au

Qld volume

---Qld

Figure 10 shows how the price for each regional Q1 2019 base contract has changed over the last 10 weeks (as well as the total number of trades each week). The closing quarter 1 2017 and quarter 1 2018 prices are also shown. The AER notes that data for South Australia is less reliable due to very low numbers of trades.

■Vic volume

— Vic

SA volume

SA

NSW volume

NSW

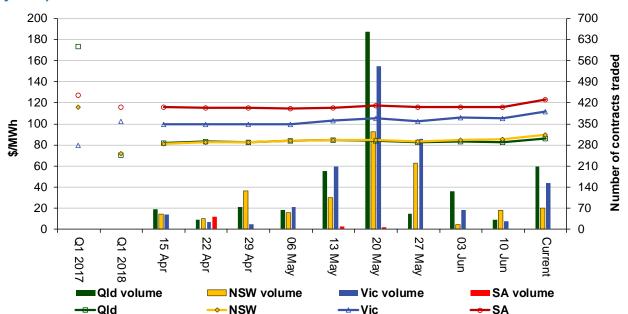
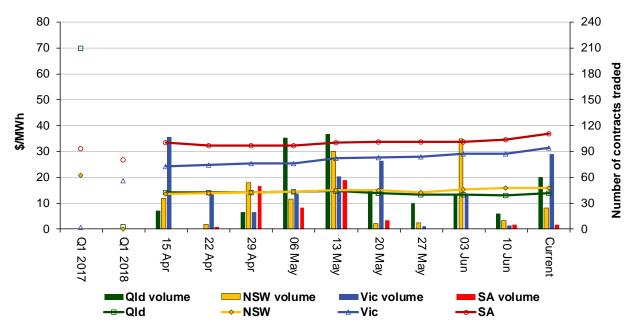


Figure 10: Price of Q1 2019 base contracts over the past 10 weeks (and the past 2 years)


Note. Base contract prices are shown for each of the current week and the previous 9 weeks, with average prices shown for periods 1 and 2 years prior to the current year.

Source. ASXEnergy.com.au

Prices of other financial products (including longer-term price trends) are available in the <u>Industry Statistics</u> section of our website.

Figure 11 shows how the price for each regional quarter 1 2019 cap contract has changed over the last 10 weeks (as well as the total number of trades each week). The closing quarter 1 2017 and quarter 1 2018 prices are also shown.

Figure 11: Price of Q1 2019 cap contracts over the past 10 weeks (and the past 2 years)

Source. ASXEnergy.com.au

Australian Energy Regulator July 2018