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Memorandum 

From: Tim Coelli and Denis Lawrence  Date: 11 March 2020  

To: AER Opex Team 

Subject: Comments on 2019 Frontier Economics Benchmarking Reports for EQ 

 

Economic Insights has been asked to provide advice to the AER regarding two recent reports 

prepared by Frontier Economics (FE 2019a,b) for Energy Queensland (EQ). These reports were 

submitted to the AER by EQ in its initial and revised proposals, respectively, for the 2020–25 

regulatory period. 

FE (2019a,b) make a number of critiques of and suggestions regarding the AER’s economic 

benchmarking of electricity distribution network service providers (DNDPs). The critiques and 

suggestions cover econometric and modelling issues and the operating environment factors 

used by the AER (OEFs). This assessment of the FE (2019a,b) reports covers only econometric 

and modelling issues. Specific OEF issues are being addressed separately by the AER. 

We proceed to assess each of the main econometric and modelling issues raised by FE 

(2019a,b). 

Tribunal recommendations 

FE (2019b, p8) state that: 

Nearly four years has passed since the Tribunal handed down its judgement. Yet, the 

benchmarking approach applied by the AER in its Draft Decisions fails to address many 

of the fundamental failings identified by the Tribunal. Many of those criticisms made 

by the Tribunal have received only cursory consideration by the AER or have been 

ignored altogether. 

We have two general comments to make here.  First, the AER has made substantive changes 

in response to comments made by the Tribunal and during the Tribunal proceedings.  For 

example: 

• The AER now uses an average of predictions from up to four econometric models and, 

in some cases, total factor productivity index number models as well as other supporting 

tools including PPIs at total cost level and at cost category level (eg vegetation 

management, emergency response, maintenance, etc)  to assess DNSPs’ opex efficiency 

and potential opex productivity growth instead of just the one econometric model as 

criticised by the Tribunal 

• The AER has undertaken a major review of the OEFs it uses and now focuses on key 

material OEFs instead of also including an allowance for immaterial OEFs, and 
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• The AER has moved to further improve data quality and consistency among DNSPs as 

the EBRIN data – which were of relatively high quality to start off with – are 

progressively refined as remaining minor issues come to light. 

Second, we observe that the predictions from the SFACD model that were produced in 

Economic Insights (2014, 2015) and subsequently used by AER (2015) in forming its forecast 

of efficient opex for the NSW and ACT DNSPs have proven to be quite accurate.  Although 

the Tribunal found the AER’s claimed sole reliance of the SFACD model to be incorrect, the 

passage of time has shown that these regulated firms have actually achieved opex levels very 

similar to the original AER targets derived from the Economic Insights benchmarking models. 

In remaking the decisions in 2018, the AER observed that the NSW/ACT DNSPs have 

appeared to respond to the stronger incentives imposed by the use of economic benchmarking 

to reduce their opex to the level set by the AER’s 2015 decision. 

Bottom–up benchmarking 

FE (2019b, p9) state that: 

We note that the Tribunal directed the AER explicitly to remake its 2015 opex decisions 

(for those DNSPs that sought merits reviews) by undertaking a bottom–up review of 

forecast opex. The AER has not undertaken any bottom–up assessment of base year 

opex in the Draft Decisions, even as a cross–check of its top–down benchmarking 

analysis. 

The first thing to note here is that exactly what is meant by ‘bottom–up’ assessment can vary 

widely. At one end of the spectrum it can mean detailed engineering assessments at a relatively 

micro level of all the DNSP’s processes. At the other end of the spectrum it can mean a much 

higher–level assessment of a number of categories of opex using techniques such as regression 

analysis, ratio analysis and/or unit cost assessment with multiple or single drivers identified as 

the key cost drivers at the activity level. The Tribunal did not define exactly what it meant by 

‘bottom–up’ analysis. 

During the Tribunal process the AER noted there had been limited use of bottom-up 

engineering modelling in earlier resets but this was generally applied to capex assessment while 

opex relied on the revealed cost approach to use past expenditure as the starting point. The 

DNSPs’ submissions argued for a line–by–line, bottom–up review at the category level. As 

noted above, the AER has now moved to include PPIs at the total cost level and at the cost 

category level (eg vegetation management, emergency response, maintenance, etc) as 

supporting tools in its economic benchmarking. 

For the purposes of this discussion we define ‘bottom–up’ analysis to include detailed 

engineering assessments at the process level. But similar issues will also apply to the somewhat 

higher–level analysis of individual opex categories. 

A bottom–up assessment would likely involve a significant and onerous data collection activity 

for each regulated DNSP, which can often be costly and invasive.  This type of process–level 

regulatory benchmarking can result in the formation of a second layer of administration within 

each DNSP, with the regulator essentially “second guessing” every decision made regarding 

the various individual activities within the DNSP.   
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In addition to this, it should be noted that a bottom–up performance assessment will generally 

involve the production of a range of technical indicators and partial productivity measures.  

Any assessment of a list of individual partial productivity benchmarking measures or technical 

indicators will in general produce an aggregate benchmarking target for a firm that is more 

stringent than that derived from the use of a global or “top–down” productivity measure, such 

as those calculated using frontier analysis.1 This is because the individual assessment of a series 

of technical indicators or PPIs at the process level is likely to lead to ‘cherry–picking’ of results 

which risk producing an overall target that is unobtainable. This contrasts to ‘tops–down’ 

analysis where much better account is taken of trade–offs and feasibility constraints. 

This can be shown using the simple illustration provided below in Table 1 and Figure 1.  In the 

first section of Table 1 we have constructed artificial data for four DNSPs, labelled A, B, C 

and D.  We assume that each DNSP uses only one input variable (10 units of labour) and two 

output variables (customer numbers and line length).2  If a frontier analysis is conducted, Figure 

1 indicates that DNSPs A, C and D lie on the estimated frontier and hence are deemed to be 

efficient, while DNSP B is inside the frontier with an efficiency measure of approximately 67 

per cent, which is the degree by which it could proportionally expand its outputs (along the 

dotted line) or reduce its labour input and still remain within the production frontier. 

If we instead assess the performance of these four DNSPs using the separate partial productivity 

ratios of customers/labour and lines/labour reported in the first section of Table 1 we conclude 

that only DNSP A is efficient in terms of lines/labour and only DNSP D is efficient in terms of 

customers/labour and also observe that no DNSP is efficient in both indicators – with efficient 

production now defined by the star marked on Figure 1.  However, the ‘tops–down’ frontier 

analysis indicates that the starred point derived from the separate analyses of ‘bottom–up’ 

indicators is likely to be, at best, overly onerous and, at worst, infeasible. 

Next, consider an alternative use of these ‘bottom–up’ partial productivity ratios where the 

DNSPs first attempt to allocate their total labour input across these two output activities prior 

to constructing the individual partial productivity ratios.  This is considered in the lower part 

of Table 1 where we investigate two simple cases of labour allocation.  In the first we assume 

each DNSP nominally allocates one employee per 100kms of line (with the remainder allocated 

to customer activities) while in the second we assume each DNSP allocates one employee per 

25 customers (with the remainder allocated to lines activities).  In each of these two cases we 

find that only one DNSP is efficient and the other three are inefficient.  Compare this with the 

‘tops–down’ frontier method where three out of the four DNSPs were observed to be efficient. 

When input allocations are made across output categories like this another issue needs to be 

noted.  That is, given that each DNSP generally decides on its own internal allocation rules, a 

DNSP might decide to utilise an unusual allocation method that allocates an unrealistically 

small amount of input to one output activity (eg lines) and a correspondingly larger amount to 

another output activity (eg customers).  As a result, the partial productivity measure for lines 

might then define an efficiency level that is not technically feasible – and hence even further 

overstate the degree of inefficiency across the remainder of the group of DNSPs.   

 
1 This assumes the basis of assessment is efficient unit costs and the output specification is demand-driven. 
2 This allows us to draw this example in two dimensions. 
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Table 1 Bottom–up versus top–down benchmarking 

 

 

Figure 1 Bottom–up versus top–down benchmarking 

 

 

Given the above discussion, we would expect that it would normally be in the interests of a 

regulated DNSP – and also consumers – to argue for the use of aggregate ‘tops–down’ frontier 

DNSP labour lab cust lab line customers line length cust/lab line/lab

A 10 50 800 5 80

B 10 100 400 10 40

C 10 150 600 15 60

D 10 200 200 20 20

DNSP labour lab cust lab line customers line length cust/lab line/lab

A 2 8 50 800 25 100

B 6 4 100 400 17 100

C 4 6 150 600 38 100

D 8 2 200 200 25 100

DNSP labour lab cust lab line customers line length cust/lab line/lab

A 2 8 50 800 25 100

B 4 6 100 400 25 67

C 6 4 150 600 25 150

D 8 2 200 200 25 100
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methods over the use of ‘bottom–up’ analyses of technical indicators and  partial productivity 

measures.  Hence, it is somewhat surprising to see FE (2019b) apparently arguing for the use 

of the latter approach. 

Urban versus rural 

FE (2019b, p10) state that: 

We demonstrated in our January 2019 benchmarking report that statistical testing 

suggests that rural and urban samples should not be pooled together. This result is 

intuitively and economically compelling since rural and urban DNSPs typically operate 

in quite different environments, often have differently–engineered networks and face 

different cost challenges. 

We have studied the analysis referred to in the FE (2019a) benchmarking report and note that 

their claimed statistical test has been conducted only for the SFACD model using the 2006–

2017 data. 

There are a number of issues regarding this “poolability” analysis. First, FE (2019a,b) do not 

state what type of hypothesis test has been conducted.  It is not indicated whether a Likelihood 

Ratio test or a Wald test or another asymptotic test with a chi–square distribution has been 

undertaken and we can find no record of this test in FE’s accompanying Stata files. 

Second, while the FE (2019b) report argues for the use of the Translog (TL) functional form 

and also for the use of the shorter data set 2012–2018, it does not provide any explicit updated 

urban-rural “poolability” tests for the data sets and models used in this more recent report.  It 

only refers to a single test of the SFACD model on the longer 2006–2017 data set from the FE 

(2019a) report.  It is not clear why the tests were not repeated and reported for the two time 

periods of 2006–2018 and 2012–2018 and for the four models of SFA CD, LSE CD, SFA TL 

and LSE TL.  It is also not clear whether these tests provided the same answer and had stable 

parameter estimates. 

Third, there is a lack of information on whether estimated first–order coefficients have the 

expected size and correct sign and whether monotonicity conditions are satisfied in the TL 

models.   FE (2019a) do present the estimated coefficients of the SFACD model in their 

Appendix C, which does have correctly signed coefficients.  However, the FE (2019b) report 

document presents no additional estimated coefficients for the other models nor do they provide 

monotonicity information for the TL models.   

The estimated coefficients for these extra models were however available in the Stata files that 

were attached to the FE (2019b) report document.3  These econometric estimates have been 

extracted and are summarised in Table 2 below.  The first thing we note is that six of the eight 

models in this table have incorrectly signed estimated coefficients for ShareUGC.  That is, 

these models imply that an increase in undergrounding results in an increase in opex.  This is 

counter-intuitive and undermines the validity of these models.  Furthermore, we note that the 

estimated first-order coefficients on RMDemand are also incorrectly signed in four Urban 

 
3 We note that the Stata files initially submitted by FE were written in a non–transparent format that also 

suppressed much of the information required to assess the FE analyses. The AER subsequently requested FE to 

resubmit the Stata files in a more transparent and unsuppressed format. 
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interaction models, suggesting that (at the sample mean) an increase in RMDemand will result 

in a reduction in opex.  Again, this is counter-intuitive and undermines the validity of these 

models.4   

Table 2 Estimated first-order coefficients in baseline and urban-rural 
models 

 

 

The signs of the first-order coefficients in the TL models provide information on the 

monotonicity conditions at the sample mean.  However, monotonicity conditions can vary 

across observations in TL models.  Hence a thorough monotonicity test requires the evaluation 

of elasticities at each and every data point in the sample.  We therefore looked at the FE (2019b) 

Stata files to see if we could find information on the observation specific elasticities but were 

unable to find this information.  Consequently, we have conducted these calculations ourselves 

and have summarised the results for the Australian DNSPs in Table 3 below.  We observe that 

 
4 We also note that the coefficient of CircLen is incorrectly signed in the TLSFA 2012-2018 Urban model as 

well. 

Model Baseline

Period 2006-2018 2012-2018

Method CDLSE TLLSE CDSFA TLSFA CDLSE TLLSE CDSFA TLSFA

CustNum 0.682 0.512 0.665 0.673 0.684 0.443 0.660 0.587

CircLen 0.154 0.152 0.149 0.144 0.179 0.195 0.217 0.202

RMDemand 0.153 0.303 0.173 0.152 0.134 0.332 0.107 0.183

ShareUG -0.156 -0.145 -0.134 -0.103 -0.161 -0.129 -0.084 -0.054

Model Rural

Period 2006-2018 2012-2018

Method CDLSE TLLSE CDSFA TLSFA CDLSE TLLSE CDSFA TLSFA

CustNum 0.553 0.546 0.837 0.626 0.504 0.309 0.550 0.271

CircLen 0.077 0.137 0.159 0.233 0.055 0.120 0.120 0.609

RMDemand 0.380 0.256 0.035 0.203 0.467 0.524 0.365 0.169

ShareUG -0.218 -0.182 -0.150 -0.133 -0.231 -0.188 -0.219 -0.241

Model Urban

Period 2006-2018 2012-2018

Method CDLSE TLLSE CDSFA TLSFA CDLSE TLLSE CDSFA TLSFA

CustNum 0.572 0.296 0.566 0.937 0.402 0.225 0.347 0.781

CircLen 0.482 0.400 0.322 0.176 0.722 0.753 0.709 -0.067

RMDemand -0.033 0.357 0.041 -0.250 -0.087 0.086 -0.080 0.237

ShareUG 0.003 0.037 -0.178 -0.131 0.122 0.251 0.090 0.160
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all of the Rural/Urban models have a substantial number of monotonicity violations, with very 

large proportions of observations of 33 per cent, 33 per cent, 36 per cent and 100 per cent in 

some cases, indicating significant problems with all of these models. 

Table 3 Monotonicity violations in Australian data in baseline and urban-
rural Translog models, percentage of observations 

 

 

Fourth, the pooling test that is reported appears to hinge on an arbitrarily selected point at which 

urban becomes rural, namely 20 customers per kilometre of circuit length.  FE (2019a,b) 

provide no information on how sensitive the claimed test result is to adjustments in this 

arbitrary cut–off point.  Also, a number of Australian DNSPs have a network that is a mixture 

of highly urbanised areas and rural areas.  For example, the Tasmanian DNSP covers Hobart 

and Launceston as well as rural areas in the rest of the state. Similarly, the South Australian 

DNSP covers Adelaide – a city of well over one million – plus the rest of the state. And the 

two ‘rural’ Victorian DNSPs each cover significant sections of suburban Melbourne. Having 

an arbitrary cut–off of 20 customers per kilometre overall that classes these DNSPs as rural is 

unlikely to accurately the reflect the characteristics of these DNSPs that cover very different 

types of service areas and is likely to distort the model results. Furthermore, it is unclear 

whether the application of this arbitrary cut-off point is appropriate for the overseas DNSPs 

with only two NZ DNSPs being classified as urban and only two Ontario DNSPs being 

classified as rural. 

As an illustration of the potential problems of dividing the sample into two groups, consider 

Figure 2 below.  The frontier methods used in the AER work (for example illustrated by the 

blue curve in Figure 2) are designed to allow DNSPs with similar output mixes (eg customers 

per km of line) to be benchmarked with each other – providing a continuum of benchmarking 

subgroups as you move around the non–linear production surface.  When the sample is divided 

2006-2018

Method: LSE SFA

Model CustNum CircLen RMDemand CustNum CircLen RMDemand

Base 0% 0% 0% 0% 1% 2%

Rural 0% 0% 0% 0% 0% 36%

Urban 0% 0% 0% 4% 0% 33%

2012-2018

Method: LSE SFA

Model CustNum CircLen RMDemand CustNum CircLen RMDemand

Base 25% 0% 0% 0% 3% 0%

Rural 0% 0% 0% 14% 14% 0%

Urban 100% 0% 0% 19% 0% 33%
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into artificial sub–groups and individual sub–group frontiers estimated (illustrated by the red 

and green lines in Figure 2), there is often little to be gained (even though the estimated 

parameters might differ to some extent). But some additional uncertainty can be introduced for 

those medium density firms that are located on the boundary of the two groups. 

Figure 2 Customer density across the frontier 

 

 

Fifth, it should be noted that by including both customer numbers and line length as outputs, 

we are allowing for differences in customer density across DNSPs. This point was actually well 

demonstrated in FE (2015, p.39) in an earlier report prepared for Ergon Energy. Because the 

functional forms we use are logarithmic, including customer numbers and line length as 

separate outputs is equivalent to including line length as an output along with customer density 

as an OEF. In effect, this is similar treatment of customer density to our treatment of the share 

of undergrounding OEF included in our models. This greatly reduces the need to consider 

separate treatment of rural and urban DNSPs, particularly given the potentially arbitrary and 

inadequate nature of the definition of rural versus urban.  

Sixth, the accuracy of estimation is actually improved by having diverse characteristics in the 

sample. If all included DNSPs have similar characteristics then the model will find it hard to 

provide robust parameter estimates. This was noted in the current context by our fellow 

economic benchmarking practitioner, Pacific Economics Group (PEG 2008, p.12): 

Notice also that the precision of an econometric benchmarking exercise is enhanced by 

using data from companies with diverse operating conditions. For example, we will 

obtain a better estimate of the impact of line length on cost if we include in the sample 
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companies that, like Toronto Hydro Electric System (THES), have high customer 

density as well as data for companies that, like Sioux Lookout, have low density. 

In other words, instead of increasing the accuracy of treatment for rural DNSPs, attempts to 

separate samples for rural and urban DNSPs are likely to lead to less precise parameter 

estimates for all DNSPs. 

This leads to our seventh point that it is quite common for regulatory economic benchmarking 

models to include both rural and urban DNSPs in the sample. Allowance may be made for 

differences in customer density across DNSPs either by choice of the output specification or 

by inclusion of an OEF variable. But it is rare for economic benchmarking studies to attempt 

to provide completely separate parameter estimates for most variables for rural and urban 

DNSPs. For example, the long line of economic benchmarking studies PEG has prepared for 

the Ontario Energy Board, culminating in PEG (2019a) include a sample of rural and urban 

DNSPs with a wide range of customer densities. Separate customer numbers and line length 

outputs are included but no allowance is made for differentiation of parameter estimates across 

rural and urban DNSPs. 

Ontario data 

FE (2019b, p10) state that they have: 

shown on a number of occasions, including in our January 2019 benchmarking report, 

that statistical testing demonstrates that data on Ontarian DNSPs should not be pooled 

with data on Australian and New Zealand DNSPs. 

However, the application of ‘poolability’ tests in this instance is completely flawed. As 

explained in Economic Insights (2014), the reason for including international data in the opex 

cost function modelling is the inability to reliably estimate the underlying cost function using 

only Australian data, due to the limited time–series variability within the Australian data.  

Therefore, it is no surprise that the estimated coefficients from the Australian only or Australian 

and NZ models appear to be different from the full model in a ‘poolability’ test. But this is 

because the former cannot be reliably estimated.  

Furthermore, we consider that the technologies used in distributing electricity across the three 

countries are common such that the output–cost relationship is not materially different.  The 

inclusion of country dummy variables in the econometric models allows for systematic 

differences in operating environments between countries. Where operating conditions differ, 

this is likely to affect total opex in levels, rather than the output coefficients. An example of 

this would be Ontario’s considerably harsher winter conditions which require more to be spent 

on clearing lines of ice and snow and keeping access to customers open. This would be likely 

to increase opex for an Ontario DNSP that was otherwise of similar size (or output mix) to an 

Australian DNSP or Ontario DNSPs as a group relative to Australian DNSPs as a group.  

However, for otherwise identical DNSPs, one in Australia and the other in Ontario, the same 1 

per cent increase in line length, is expected to result in the same percentage increase in opex. 

Despite the inherently circular nature of undertaking a poolability test in this instance, we have 

studied the analysis referred to in the FE (2019a) benchmarking report and note that their 
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claimed statistical test has been conducted only for the SFACD model using the 2006–2017 

data. 

There are again several issues regarding this “poolability” analysis. First, FE (2019a,b) do not 

state what type of hypothesis test has been conducted.  It is not indicated whether a Likelihood 

Ratio test or a Wald test or another asymptotic test with a chi–square distribution has been 

undertaken and we can find no record of this test in FE’s accompanying Stata files. 

Second, while the FE (2019b) report argues for the use of the Translog (TL) functional form 

and also for the use of the shorter data set 2012–2018, it does not provide any explicit updated 

“poolability” tests for the data sets and models used in this more recent report.  It only refers 

to a single test of the SFACD model on the longer 2006–2017 data set from the FE (2019a) 

report.  It is not clear why the tests were not repeated and reported for the two time periods of 

2006–2018 and 2012–2018 and for the four models of SFA CD, LSE CD, SFA TL and LSE 

TL.  It is also not clear whether these tests provided the same answer and had stable parameter 

estimates. 

Third, there is a lack of information on whether estimated first-order coefficients have the 

expected size and correct sign and whether monotonicity conditions are satisfied in the TL 

models.  FE (2019a) do present the estimated coefficients of the SFACD model in their 

Appendix C, which does have correctly signed coefficients.  However, the FE (2019b) report 

presents no additional estimated coefficients for the other models nor do they provide 

monotonicity information for the TL models.   

Table 4 Estimated first-order coefficients in baseline and Ontario models 

 

The estimated coefficients for these extra models were however available in the Stata files that 

were attached to the FE (2019b) report.  These econometric estimates have been extracted and 

are summarised in Table 4.  The first thing we note is that six of the eight models in this table 

have incorrectly signed estimated coefficients for ShareUGC.  That is, these models imply that 

Model Baseline

Period 2006-2018 2012-2018

Method CDLSE TLLSE CDSFA TLSFA CDLSE TLLSE CDSFA TLSFA

CustNum 0.682 0.512 0.665 0.673 0.684 0.443 0.660 0.587

CircLen 0.154 0.152 0.149 0.144 0.179 0.195 0.217 0.202

RMDemand 0.153 0.303 0.173 0.152 0.134 0.332 0.107 0.183

ShareUG -0.156 -0.145 -0.134 -0.103 -0.161 -0.129 -0.084 -0.054

Model Ontario

Period 2006-2018 2012-2018

Method CDLSE TLLSE CDSFA TLSFA CDLSE TLLSE CDSFA TLSFA

CustNum 0.390 0.034 0.226 0.100 0.162 -0.202 0.189 -0.091

CircLen 0.494 0.375 0.261 0.247 0.720 0.593 0.495 0.408

RMDemand 0.046 0.546 0.421 0.540 0.046 0.559 0.209 0.640

ShareUG 0.150 0.183 -0.045 -0.038 0.295 0.394 0.192 0.226
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an increase in undergrounding results in an increase in opex.  This is counter-intuitive and 

undermines the validity of these models.  Furthermore, we note that the estimated first-order 

coefficients on CustNum are also incorrectly signed in two models (TLLSE and TLSFA using 

2012-2018 data), suggesting that (at the sample mean) an increase in customers will result in a 

reduction in opex.  Again, this is counter-intuitive and undermines the validity of these models.   

The signs of the first-order coefficients in the TL models provide information on the 

monotonicity conditions at the sample mean.  However, monotonicity conditions can vary 

across observations in TL models.  Hence, a thorough monotonicity test requires the evaluation 

of elasticities at each and every data point in the sample.  We therefore looked in the FE (2019b) 

Stata files to see if we could find information on the observation–specific elasticities but were 

unable to find this information.  Consequently, we have conducted these calculations ourselves 

and have summarised the results in Table 5.  We observe that three of the four Ontario models 

have a substantial proportion of observations with monotonicity violations for CustNum: 54 

per cent, 62 per cent and 100 per cent, indicating significant problems with these three models. 

Table 5 Monotonicity violations in Australian data in baseline and Ontario 
Translog models, percentage of observations 

 

Fourth, it should be noted that the Ontario data includes DNSPs that on average have a higher 

customer density (customers per km of network length) with a mean of 47 and a range from 10 

to 83, while the Australian data has a mean of 28 and range of 4 to 76, and the New Zealand 

data has a mean of 12 and a range of 4 to 36.  As a result, these Ontario observations play a 

larger role in determining the shape of the production technology in that part of the data space 

that is closer to the customers axis (eg the horizontal axis in Figure 2 above).  If the production 

technology was linear, this would not be an issue.  However, the production technology is non–

linear and hence it is not surprising that a subset of the data which has an average customer 

density that differs from the remainder of the sample provides some estimated coefficients that 

differ to some degree.  This is a consequence of the non–linear nature of the global frontier. 

Fifth, as noted above, the accuracy of estimation is actually improved by having diverse 

characteristics in the sample. If all included DNSPs have similar characteristics then the model 

2006-2018

Method: LSE SFA

Model CustNum CircLen RMDemand CustNum CircLen RMDemand

Base 0% 0% 0% 0% 1% 2%

Ontario 54% 0% 0% 0% 0% 0%

2012-2018

Method: LSE SFA

Model CustNum CircLen RMDemand CustNum CircLen RMDemand

Base 25% 0% 0% 0% 3% 0%

Ontario 100% 0% 0% 62% 0% 3%
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will find it hard to provide robust parameter estimates. This was illustrated in Economic 

Insights (2014, p.28) where it was shown that the Australian data on its own exhibited 

insufficient variability to produce robust parameter estimates. The FE (2019a, p.36) 

recommendation that future benchmarking exclude international data is thus likely to remain 

infeasible. Similar problems are likely to accompany attempts to differentiate parameter 

estimates by country within the larger sample.  

This leads to our sixth point that it is quite common for regulatory economic benchmarking 

models to include DNSPs from a diverse range of jurisdictions in the sample. Our models are 

unusual in allowing for differences in cost levels across jurisdictions – most do not, either 

because the authors have considered it unnecessary or because insufficient information has 

been available. And it is very rare for economic benchmarking studies to attempt to provide 

completely separate parameter estimates for most variables for DNSPs from different 

jurisdictions, again either because it was considered unnecessary or infeasible. For example, a 

recent economic benchmarking study prepared for the Ontario Energy Board by our fellow 

economic benchmarking practitioner, PEG, uses a sample of 84 DNSPs covering Ontario and 

all corners of the United States (PEG 2019b). That is, jurisdictions cover a wide range of 

operating environments from cold northern climates and large cities in Ontario, New York and 

Pennsylvania to warm, subtropical climates in Florida, to the sparse plains of Texas, to the 

mountains of Colorado, and to conurbations in temperate coastal California. Similarly, a wide 

range of jurisdictional regulatory regimes is included from productivity–based to incentive–

based to cost of service–based. No differentiation of parameter estimates across this wide range 

of jurisdictional and regulatory operating environments is included.  

Normality of residuals 

FE (2019b, p11) state that: 

For the validity of the SFA models, it is also a requirement that the residual term is 

normally distributed. 

This is incorrect.  The error structure of the SFA model is the sum of a normal distribution and 

a time–invariant truncated normal distribution.  Thus, one would expect that the residuals 

would actually be non–normal and hence it makes no sense to test for normality of residuals in 

the case of SFA.  For details of the SFA methods used see: 

 https://www.stata.com/manuals13/xtxtfrontier.pdf  

FE (2019b, p11) also state that: 

As an example of such a diagnostic investigation, in Figure 2 we plot the residuals of 

the LSE–TL model estimated over the 2006–2018 period. The residuals, which can be 

interpreted as percent prediction errors, are plotted against a normal distribution. If 

the residuals were normally distributed, the points would lie on a straight line. 

FE (2019b) do not state exactly what type of plot is being presented here.  However, we will 

assume that it is a traditional “normal probability plot” – for a description of this method, see 

Levine et al (2002, p.243).  The plot FE (2009b) presents is linear for the vast majority of 

observations (as expected) with a small number of residuals deviating from the line in the tails.  

While FE (2019b) has not identified these latter observations, our manipulation of the 

https://www.stata.com/manuals13/xtxtfrontier.pdf
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supporting Stata and spreadsheet files provided by FE show that the ‘outlier’ tails are made up 

entirely of Ontario and New Zealand observations and hence the FE (2019b, p.11) claim of 

potential LSE–TL model ‘misspecification’ has no impact on the Australian DNSP analysis.  

Furthermore, we note that FE (2019b) do not present similar information for the other seven 

models.  

In addition to this, it is unclear as to why the normality of the residuals of the LSE model is of 

particular interest here.  The asymptotic properties of the LSE estimator do not rely upon an 

assumption of normality of the disturbance term.  For details of the LSE method used see: 

https://www.stata.com/manuals13/xtxtpcse.pdf  

Finally, on closer inspection of the FE Stata file “Fig2 QQ plot.do” we find that the following 

code has been used: 

xtpcse lvc ly2-ly4 ly22 ly23 ly24 ly33 ly34 ly44 lz1 yr cd2 cd3 d2-d13, c(a) het 

* Q-Q plot 

predict yhat_TL 

gen e_TL = lvc - yhat_TL 

gen res_LSE_TL = 100*(exp(e_TL) -1)  

qnorm res_LSE_TL 

This Stata code indicates that a linear transformation of the exponent of the residuals has been 

plotted and not the actual residuals themselves.  If the residuals of this regression equation 

where normally distributed, then an exponential transformation would produce a series that has 

a log-normal distribution by definition.  Hence, in our assessment this QQ plot analysis of the 

exponent of the residuals is clearly invalid. 

Tests of TL versus CD models 

FE (2019b, p12) state that: 

It is also possible to undertake statistical tests to evaluate the comparative fit of the 

models to the data. One such test is a test of the fit of the TL model versus the CD model, 

which is a special case of the TL model. We have carried out this test, and the results 

show that, in all four cases—LSE long sample, SFA long sample, LSE short sample and 

SFA short sample—the test rejects the hypothesis that the CD model is an acceptable 

simplification of the TL model. (footnote 25) 

We do not wish to imply that there is no value in estimating the CD model. However, 

the above arguments strongly suggest that, for sound statistical reasons, the results of 

the econometric estimations need to be treated with appropriate caution. 

The FE (2019b) test results are reported in their footnote 25.  Again, it is not clear what type 

of hypothesis test has been conducted.  It is not indicated whether it is a Likelihood Ratio test 

or a Wald test or another test.  However, given that the testing methods are standard, the 

reported results indicate that the CD should be rejected in favour of the TL on this basis.   This 

result is not surprising and would agree with similar hypothesis test results presented in 

Economic Insights reports in the past.  For example, Economic Insights (2014, p36) found that 

while all of the six second-order output coefficients in the TL model were individually 

statistically insignificant, collectively they were significant. This can be explained by the fact 

https://www.stata.com/manuals13/xtxtpcse.pdf
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that the squares and cross products in the TL model are highly correlated leading to large 

standard errors on these estimated coefficients and hence low (individual) t-ratios. 

In most cases, when one has a sufficiently large data set, one would expect a statistical test to 

indicate that the TL is a better fit to the data relative to the CD, since the TL is a second-order 

approximation to an arbitrary functional form while the CD is a more restrictive first-order 

approximation.  However, the added flexibility of the TL also lends it towards a greater 

propensity to obtain monotonicity violations for some data points, which are problematic as 

discussed above.  There are trade-offs in every modelling decision that is made.  Hence, we 

have chosen to report both TL and CD models in our benchmarking reports for the AER. 

Monotonicity violations 

As discussed in Economic Insights (2014, pp. 32–33), it is important that econometric opex 

cost function models satisfy the technical requirement that an increase in output can only be 

achieved with an increase in cost – this is known as the monotonicity requirement. It is an 

important economic requirement. In simple terms, it is the requirement that there are no free 

lunches. If it is not satisfied, it implies that DNSPs could produce more output without any 

additional cost or, if the cost elasticity is negative, at less cost – something that does not reflect 

engineering reality. Because the translog models include second order terms, it is necessary to 

check that the estimated cost elasticities for each output are positive at each observation. 

FE (2019b, p16) state that: 

We have previously put forward arguments why minor monotonicity violations should 

not disqualify a translog model from being used to assess the efficient base year level 

of opex for DNSPs. These violations need to be considered in the context of the uses 

that the AER makes of the econometric models, the main uses being: 

• to obtain estimates of the DNSPs’ relative efficiencies; and 

• to obtain output weights to enable the calculation of the combined output 

growth across the three main output variables for use in its roll–forward 

methodology. 

Neither of these applications of the econometric models involve calculating elasticities 

for specific observations. 

We do not agree with this statement.  The panel data SFA model implemented in Stata is that 

proposed by Battese and Coelli (1988).  The formula used for the calculation of efficiency 

scores is also presented in Battese and Coelli (1988) where it is clearly shown that the efficiency 

scores calculations incorporate the residuals of the estimated model, where these residuals are 

calculated at each data point and thus explicitly make use of the localised slope information 

and hence implicitly make use of the localised elasticities as well.  As a result, if an output 

elasticity is negative for one particular output (eg lines), this would imply that a small increase 

in the production of this output, with everything else held constant, would result in a reduction 

in the calculated value of the residual and hence a reduction in the calculated efficiency score.  

That is, an increase in output produces a reduction in efficiency - this is further illustrated below 

in Figure 3.  This is a very unusual property for an efficiency measure and not one that we 

would recommend. 
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The property of monotonicity appears not to be well understood by many people.  It is perhaps 

useful to spend some time explaining the importance of the monotonicity property in any 

efficiency analysis that involves frontier estimation.   

First, it must be emphasised that a negative production elasticity implies a production 

possibility curve with an incorrect (positive) slope.  To illustrate this, consider a simple cost 

frontier with two outputs: customers and line length.  The localised part of a Translog cost 

frontier can be approximated by the following Cobb Douglas function in log form:   

ln(𝑜𝑝𝑒𝑥) = 𝛽0 +  𝛽1 ln(𝑙𝑖𝑛𝑒𝑠) +  𝛽2 ln(𝑐𝑢𝑠𝑡) 

Rearranging the equation to have ln(lines) on the LHS we obtain: 

ln(𝑙𝑖𝑛𝑒𝑠) = ln(𝑜𝑝𝑒𝑥) − [𝛽0 +  𝛽2 ln(𝑐𝑢𝑠𝑡)]/ 𝛽1 

Taking derivatives with respect to ln(cust) we obtain: 

𝜕ln(𝑙𝑖𝑛𝑒𝑠)

𝜕ln(𝑐𝑢𝑠𝑡)
= −

𝛽2

𝛽1
 

Using the log differentiation rule this is equivalent to: 

𝜕𝑙𝑖𝑛𝑒𝑠

𝜕𝑐𝑢𝑠𝑡
= −

𝛽2

𝛽1

𝑐𝑢𝑠𝑡

𝑙𝑖𝑛𝑒𝑠
 

This derivative is the slope of the production possibility curve.  It will be negative (as expected) 

if the two output elasticities are positive.  However, this slope will be positive if one of these 

two elasticities is negative.  An example of this is provided in Figure 3 below, where a 

production possibility curve (for a particular level of opex) is drawn to have a negative slope 

for one section of the curve and then a positive slope for the remaining section.   

Figure 3 Effect of monotonicity violations on efficiency scores 
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Data for two DNSPs (A and B) are drawn on the diagram.  DNSP A is projecting onto part of 

the frontier which has an incorrect positive slope while DNSP B is projecting onto part of the 

frontier which has a correct negative slope.  Cost efficiency is measured along the ray from the 

origin to the frontier surface.  For example, DNSP A has a cost efficiency score equal to the 

ratio 0A/0A1, or approximately 0.85.  That is, it is producing 85 per cent of its potential output.     

Next, we increase the line length output by 10 units for both DNSPs, while holding customers 

and opex constant.  Normally, one would expect that this should have the effect of increasing 

the efficiency scores of both DNSPs.  This is true for the case of DNSP B, but conversely, we 

see that the efficiency score of DNSP A decreases when the output is increased.  This is because 

the production possibility curve has an incorrect positive slope for this DNSP. 

We hence do not recommend that efficiency scores be calculated for a DNSP where it has a 

production elasticity that is negative. 

Bootstrapping 

FE (2019, p55) present the following quote from Prof Coelli in ACCC (2012, p113) as saying: 

I would suggest that the construction of bootstrap confidence intervals for DEA 

efficiency scores could provide some useful information regarding the degree to which 

these DEA results obtained from small samples can be relied upon. 

This quote is technically accurate.  However, the interpretation of this sentence becomes clearer 

when the full quote listed in ACCC (2012, p113) is actually provided: 

Given that DEA frontiers are arguably more flexible than a second–order parametric 

frontier, such as the Translog, one would expect that the data requirements for DEA 

are greater than those of SFA. Hence, I believe that the existing rules of thumb used in 

the DEA literature are generally too low. I would suggest that the construction of 

bootstrap confidence intervals for DEA efficiency scores could provide some useful 

information regarding the degree to which these DEA results obtained from small 

samples can be relied upon. 

In this fuller context it is apparent that the quote was not actually a ringing endorsement of 

using bootstrapping in efficiency models.  Instead the quote relates to a discussion of how some 

of the commonly used rules of thumb for determining how much data is needed for a DEA 

model are questionable, and that given that DEA is a non–statistical (deterministic) method, 

bootstrapping might provide some insight into how unreliable the DEA method is when small 

samples are used. 

A more complete view of Prof Coelli’s views on bootstrapping can be found in Coelli et al 

(2005, pp202–203) where, in a discussion of DEA methods, it is stated that the authors have 

“a number of reservations regarding the bootstrap”.  Furthermore they state that “it does not 

make much sense for one to apply bootstrapping methods to a DEA analysis based upon census 

data”, where census data refers to the situation where the data under study is not a random 

sample from a population and instead is a full census of the population under study.  This is 

clearly the case in this AER analysis at hand, since the data on DNSPs is a census and not a 

sample. Bootstrapping is a resampling technique that is useful when attempting to assess the 
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influence of sampling variability on an estimated model.  If the data is a census then clearly no 

sampling is involved in selecting the data set. 

It should also be noted that in no other part of the Coelli et al (2005) book is bootstrapping 

discussed or recommended for use with SFA or any other frontier technique. 

The main application of bootstrapping is to help construct confidence intervals around point 

estimates when the underlying distribution is unknown. Therefore, it has been commonly used 

in deterministic approaches (such as DEA) which do not account for statistical uncertainties. 

As a non-parametric alternative to the parametric approach to constructing confidence 

intervals, the residual resampling in a regression assumes that the residuals are independent 

and identically distributed, that is, the distribution of errors around the regression line is the 

same for all values of the independent variable. This assumption may not be true or may be 

inconsistent with the assumed error term in conventional regression analysis and/or frontier 

modelling which typically allows for autocorrelation, heteroskedasticity and within group 

correlation.  As a result, it is not common in regression analysis to construct bootstrap-based 

confidence intervals. 

It should be emphasised that Economic Insights (2019) and our earlier economic benchmarking 

reports for the AER have all provided information on the statistical reliability of the efficiency 

scores derived from their SFA and LSE models.  These are provided in the form of asymptotic 

standard errors associated with the DNSP–level dummy variables in the LSE models and 

confidence intervals on the efficiency predictions from the SFA models.  This information is 

clearly presented in the Stata output files attached to the main report each year.  The AER has 

regularly taken note of this type of information in making its deliberations regarding the 

reliability of the information derived from these estimated models. 

We also observe that the application of the bootstrap in parametric frontier models (eg SFA or 

LSE) is not commonly done in practice.  A few studies have attempted to investigate the 

properties of the bootstrap in these models, with limited success.  For example, see Kim et al 

(2007) who conduct a study entitled: “The accuracy of bootstrap confidence intervals for 

efficiency levels in stochastic frontier models with panel data”.  They look at a number of 

alternative methods for constructing confidence intervals and in their conclusions state that 

(Kim et al 2007, p180): “It should be remembered that all of these methods are valid only for 

large T, and when T is not large enough that the identity of the best firm is clear, none of them 

will really be reliable”. 

The Kim et al (2007) study also clearly illustrates that the implementation of the bootstrap in 

frontier models involves a number of complexities and potential biases and cannot be 

implemented in a simple manner.  The data generating process associated with frontier models 

is complex and hence requires careful consideration when implementing bootstrap methods.   

It is not clear to us that the FE (2019b) implementation of the bootstrap technique takes into 

account these complexities.  The bootstrap procedure they describe appears to be a very simple 

process of sampling with replacement from an empirical distribution.  This appears to be 

insufficient given the complexities of the models at hand.   

To begin with we consider the SFA model which involves an error distribution that is the sum 

of two random variables – one with a normal distribution (𝑣𝑖𝑡) and another with a time–
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invariant truncated normal distribution (𝑢𝑖).  It is not clear that the FE bootstrap procedure has 

accommodated this composed error structure in an appropriate manner.  First, it appears that 

the FE bootstrap procedure has implicitly assumed that the random variables 𝑢𝑖 are fixed 

parameters when generating their 1,000 samples, but then contrary to this they assume the 𝑢𝑖 

are random variables when estimating the SFA model in each replication, creating a clear 

inconsistency between the data generating process and the model structure itself.   Second, in 

the FE bootstrap data generating process the 𝑢𝑖 are predicted using the Stata conditional 

expectation predictor 𝐸(𝑢𝑖|𝜀𝑖), where 𝜀𝑖 is the T×1 vector of the 𝜀𝑖𝑡 = 𝑣𝑖𝑡 + 𝑢𝑖, while the 

efficiency scores are then predicted using 𝑇𝐸𝑖 =  𝐸[exp (𝑢𝑖|𝜀𝑖)], which is not equivalent to 

exp [𝐸(𝑢𝑖|𝜀𝑖)], as is explained in Battese and Coelli (1988).5  Once again, this creates a clear 

inconsistency between the data generating process and the model structure itself.  Third, it is 

not clear how this FE bootstrap procedure has accommodated the widely known downward 

bias problem that is inherent in bootstrap analyses of frontier models, which is discussed in 

Kim et al (2007) and elsewhere.   

Next, consider the LSE model, which involves an error term characterised by autocorrelation, 

heteroskedasticity and within group (ie within DNSP) correlation.  First, it is apparent that the 

FE bootstrap procedure has not accommodated these three aspects of the assumed data 

generating process.   Second, it is again not clear how this FE bootstrap procedure has 

accommodated the widely known downward bias problem that is inherent in bootstrap analyses 

of frontier models, which is discussed in Kim et al (2007) and elsewhere.  

In footnote 101 on page 56 FE (2019b) state: 

The bootstrapping approach assumes that the residuals can be treated as independent, 

identically distributed random variables. For a well–specified regression model 

without autocorrelation and heteroscedasticity, this assumption holds in large samples. 

Intuitively, the rationale behind bootstrapping is that, if the residual terms are random 

draws for the same distribution, then any residual could, with equal probability, be 

associated with any of the observations. 

This statement tends to confirm our suspicion that this bootstrap analysis is most likely flawed. 

In addition to these points above, we also have particular reservations regarding the practical 

application of the bootstrap technique to TL functional forms, in particular in regards to 

monotonicity violations.  The bootstrap procedure involves the estimation of 1,000 model 

replications for each of the four TL models considered.  From our inspection of the FE Stata 

code we can find no information on the calculation of monotonicity tests at each observation 

of each model in each of these 1,000 replications.  We would suspect that monotonicity 

violations would be common in the TL models. 

Our suspicions in this regard appear to be confirmed by the results presented in Figure 11 of 

FE (2019b) where it is clearly shown that the point estimates for the short sample SFATL 

models for both Ergon and Energex do not lie within the 90% confidence intervals obtained.  

This is most unusual and should have immediately rung serious alarm bells for the analysts 

responsible for running this bootstrap analysis. This result suggests that many of the underlying 

 
5 Battese and Coelli (1988) show this for the production frontier case which is easily transferred to this cost 

frontier case. 
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sets of 1,000 model replications are most likely very unstable and unreliable for these TL 

models. 

 

Finally, FE (2019b) appears to argue that where the proposed opex sits within the confidence 

interval, then there is no evidence of material inefficiency. However, in regulatory applications, 

the confidence interval has not been used to set range of possible efficient values. Rather, it is 

a statistical construct used to estimate precision of the point estimate (eg the width of the 

confidence interval and the precision of the point estimate will generally be negatively related 

to the sample size).  The point estimate provides the best estimate about the unknown true 

efficient value, while none of the other values within the confidence interval do. Confidence 

intervals may be useful in informing the degree of confidence in the point estimate, and thus 

the weights to apply to the estimate when multiple estimates from different sources/methods 

are available. They do not mean that all values within the confidence interval can be viewed as 

being efficient. 

We also note that in constructing the confidence interval for base year target opex, FE (2019b) 

appears to apply the 0.75 efficiency target.  We note that the AER uses this lower efficiency 

target (rather than either 1.00 or the score of the most efficient DNSP) to provide an error 

margin for data/modelling uncertainties and thus the FE (2019b) approach involves double 

counting.  

OEF adjustment methods 

FE (2019b, p49) criticises the AER draft decision for not adopting the following 

recommendations from FE (2019a) regarding OEF inclusion: 

• investigating the inclusion of additional cost driver variables in its model, which 

should become more feasible over time as the benchmarking sample size increases; 

and  

• making ex-ante adjustments for any costs associated with OEFs that are 

unexplained, or poorly explained, by the cost driver variables that are included in 

the model—as Ofgem does.  

With regard to the first point, the ability to include additional OEF variables in the models 

directly is limited by the availability of relevant data for both the Australian and overseas 

DNSPs included in the database. While the AER has scope to require the provision of relevant 

data for Australian DNSPs, it is not able to force the overseas DNSPs included in the database 

to provide this information. Consequently, if these variables are not available for the overseas 

DNSPs, the direct inclusion of the variables in the models is not possible. As highlighted above, 

the lack of data variability across the Australian DNSPs means that extension of the time series 

length is unlikely to significantly improve the ability to obtain robust parameter estimates based 

on Australian data only. And, it should also be noted that degrees of freedom considerations 

and correlation among exogenous variables in regressions limit the number of operating 

environment variables that can usefully be included directly in economic benchmarking 

models. The prospects of being able to directly include additional OEF variables directly in the 
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models are thus quite limited. This makes the use of subsequent adjustment the only way of 

allowing a fuller treatment of operating environment factors. 

Moving to the second point, there are four ways to allow for OEF differences between DNSPs 

in economic benchmarking models, all of which Economic Insights and the AER use in the 

DNSP economic benchmarking analysis:  

1. ex–ante changes to data – ex–ante changes are made to ensure similar coverage of 

Australian DNSP activities by, for example, removing costs associated with metering, 

connections, public lighting, fee–based and quoted services and opex associated with solar 

feed in tariffs 

2. direct incorporation of OEFs in the model – key network densities and proportion of 

undergrounding are included in the models 

3. ex–post adjustment of results for additional OEFs – ex–post adjustments are made to 

account for additional OEFs not directly captured in the models, and  

4. second stage regression analysis – Economic Insights (2014) used second stage regressions 

as a check on the need for an additional allowance for OEFs in the MPFP model.  

All four OEF adjustment methods have their own advantages and disadvantages, and the choice 

of which one (or ones) is best to use depends on the individual circumstances. As noted with 

regard to the first point, the limited ability to obtain additional data on OEFs for the overseas 

DNSPs limits the scope to make ex–ante data changes to allow for additional OEFs, just as it 

limits the scope to include additional OEFs directly in the models. But, where data for particular 

OEF variables are not universally and consistently available across countries but are available 

for Australian DNSPs, ex–post adjustment for those factors can be made when comparing 

Australian DNSP performance to the most efficient Australian firms. 

It should also be noted that in the example referred to in FE (2019b), Ofgem works with a 

sample of only 14 domestic DNSPs and, correspondingly, estimates models that include a 

minimal number of exogenous variables – in most cases only one variable although this is 

sometimes a constructed ‘composite’ variable. It excludes costs for some DNSPs associated 

with unusual operating environments, undertakes its modelling and then adds back in its view 

of efficient costs for the excluded items. This process potentially introduces scope for DNSP 

gaming regarding the size of costs to be excluded and arbitrariness in regard to the regulator’s 

view of efficient costs for those items. And, limiting the sample to national data only requires 

the estimation of models with minimal detail, likely because attempts to estimate more detailed 

models would run into the similar lack of data variability issues across DNSPs as we have 

found in Australia.  

We also note that, in addition to undertaking ex–ante data adjustments, Ofgem does make 

additional ex–post adjustments by using DNSP–specific ‘special factors’ for some DNSPs and 

the Norwegian regulator (NVE) makes post modelling adjustments using second stage 

regressions before arriving at its decision. We note that FE (2015, p.77) earlier arrived at the 

following conclusion: 
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AER may need to adopt a hybrid of the Ofgem approach (which involves more direct 

and bespoke scrutiny of the companies), but taking account of a broader range of 

factors, as does NVE. 

This is, in fact, consistent with the approach adopted in Economic Insights (2014) and 

subsequent AER decisions. 

The challenge with economic benchmarking for regulatory purposes is to determine how much 

of the unexplained residual from modelling to allocate to DSNP inefficiency and how much to 

latent (or unobservable) heterogeneity among the included DNSPs. Assuming all is 

inefficiency likely provides an upper bound for base year cost adjustments while assuming it 

is due to latent heterogeneity will provide a lower bound for base year adjustments. The former 

may produce too large an adjustment while the latter will almost certainly produce too low an 

adjustment. Our use of the two–step process for calculating the overall adjustment for operating 

environment differences and a combination of ex–ante data adjustment and ex–post additional 

OEF adjustment along with models that include more exogenous variables provides a means 

of reaching the most appropriate point within this range of possible base year adjustments. It 

also allows the impact of more operating environment factors to be adjusted for than have 

earlier economic benchmarking studies. 

Finally, FE (2019b, p50) includes a quote from the Australian Competition Tribunal which 

appears to criticise the use of ex–post OEF adjustment as being inadequate to overcome the 

effect of including ‘non–comparable’ data in the economic benchmarking models. While it is 

not clear what the Tribunal had in mind by ‘non–comparable’ data, we assume it was referring 

to the inclusion of overseas as well as Australian DNSP data and an apparent acceptance of 

arguments that the data across countries do not meet ‘poolability’ tests. However, as noted 

above, such ‘poolability’ tests are based on flawed logic when there is inadequate data 

variability among the Australian DNSPs to produce robust parameter estimates and there are 

firm grounds to believe that the basic cost relationships across DNSPs are similar, despite 

possible differences in cost levels due to things such as more extreme winter weather 

conditions. There is thus no evidence that the data are ‘non–comparable’. 
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