

2023-27 Transmission Revenue Reset

Appendix 9A: Fitting probability distributions to Service Component data

Updated for 2020 data

Submitted: 1 September 2021 PUBLIC

Contents

1	Service Component Parameters3
1.1	Service parameter 1 – Average circuit outage rate4
1.1.1	Lines event rate – fault (continuous)4
1.1.2	Transformer event rate – fault (continuous)5
1.1.3	Reactive plant event rate – fault (continuous)6
1.1.4	Lines event rate – forced (continuous)7
1.1.5	Transformer event rate – forced (continuous)8
1.1.6	Reactive plant event rate – forced (continuous)9
1.2	Service parameter 2 – loss of supply event frequency10
1.2.1	Number of events > 0.05 system minutes (discrete)10
1.2.2	Number of events > 0.30 system minutes (discrete)12
1.3	Service parameter 3 – average outage duration14
1.3.1	Average outage duration (continuous)14
1.4	Service parameter 4 – proper operation of equipment15
1.4.1	Failure of protection system (discrete)15
1.4.2	Material failure of SCADA system (discrete)17
1.4.3	Incorrect operational isolation of primary or secondary equipment (discrete)

1 Service Component Parameters

This Appendix sets out the information used to calculate AusNet's proposed Service Component caps and floors, as presented in section 8.3.1.2 of the Revised Revenue Proposal. This information was obtained using the @risk product, a risk analysis and simulation add-in tool for Microsoft Excel.

For each parameter, proposed caps and floors have been set equal to the 5th and 95th percentiles, respectively, of the probability distribution that provides the best fit to the relevant historical data. This approach aligns with that adopted by the AER in the Draft Decision and in recent determinations for ElectraNet, TransGrid and TasNetworks. The distributions and caps and floors have been revised since AusNet's Revenue Proposal to take account of 2020 actual data, which was unavailable at the time. Consistent with the requirements of the STPIS, the caps and floors set out in this document are based on the five most recent years of performance data (2016-20).

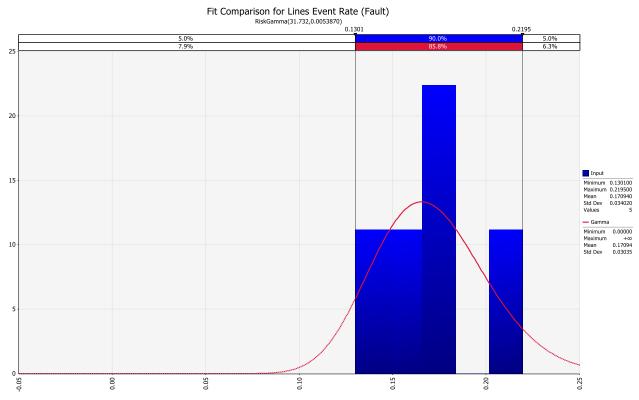
In the Draft Decision, the AER disagreed with AusNet's preference to adopt distributions based on the Anderson-Daring (A-D) fit statistics. Instead, the AER relied solely on the Kolmogorov-Smirnov (K-S) method of fitting probability distributions. For this Revised Revenue Proposal, AusNet has followed the AER's preferred method of using only the K-S method to determine the most appropriate distribution.

For the loss of supply event frequency parameters (>0.05 and >0.30 system minutes) performance data is not conducive to statistical analysis. This is due to the small number of events usually, but not always, recorded in any one year of a five year data series. To align with the Draft Decision and to ensure consistency between the two indicators, the Poisson distribution has been used to set caps and floors for these sub-parameters.

The following table summarises the probability distributions and percentiles underpinning the proposed caps and floors.

Parameter	Preferred Distribution	5th percentile	95th percentile
Average circuit outage rate			
Line event rate (fault)	Gamma	0.1243	0.2237
Transformer event rate (fault)	Erlang	0.0649	0.1880
Reactive plant event rate (fault)	Dagum	0.1490	0.3043
Line event rate (forced)	FatigueLife	0.0382	0.2074
Transformer event rate (forced)	Burr12	0.0754	0.1588
Reactive plant event rate (forced)	Burr12	0.1965	0.3466
Loss of supply event frequency			
Number of events >0.05 system minutes	Poisson	0	4
Number of events >0.30 system minutes	Poisson	0	2
Average outage duration			
Average outage duration	Rayleigh	10.6	80.8
Proper operation of equipment			
Failure of protection equipment	Poisson	22	40
Material failure of SCADA system	Geometric	0	3
Incorrect operational isolation of primary or secondary equipment	Poisson	3	11

Table 1.1: Summary of probability distributions and percentiles

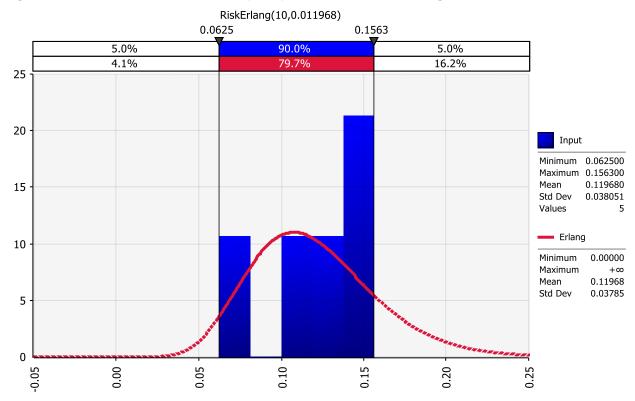

The remainder of this document sets out the rationale for selecting each distribution and the underlying percentile data as calculated by @risk.

1.1 Service parameter 1 – Average circuit outage rate

1.1.1 Lines event rate – fault (continuous)

The @risk software found that the Gamma distribution is the most appropriate fit.

Figure 1-1: Lines event rate (fault) – distribution fit using K-S



k By K-S	v .		Input	Gamma	Erlang	FatigueLife	Invgauss	Lognorm	Lognarm2	Loglogistic	Pearson6	Pearson5	Burr12	Weibull	Dagum	Frechet	BetaGeneral	Triang
Fit	Value	- Distribution Statistic	5															
Gamma	0.1887	Minimum	0.1301	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Erlang	0.1889	Maximum	0.2195	+ Infinity	+infinity	+Infinity	+Infinity	+Infinity	+Infinity	+Infinity	+Infinity	+Infinity	+Infinity	+Infinity	+Infinity	+Infinity	0.2266	0.2195
FatigueLife	0.1995	Mean	0.1709	0.17094	0.17094	0.1709	0.1709	0.1709	0.1709	0.1716	0.1710	0.1710	0.1674	0.1708	0.17300	0.1730	0.1724	0.1463
Invgauss	0.1996	Mode	0.1323 (est)	0.16555	0.16560	0.1629	0.1629	0.1630	0.1630	0.1646	0.1621	0.1606	0.1786	0.1786	0.15030	0.1503	0.1971	0.2195
Lognorm	0.1997	Median	0.1760	0.16915	0.16916	0.1683	0.1682	0.1683	0.1683	0.1684	0.1679	0.1674	0.1732	0.1732	0.16336	0.1634	0.1784	0.1552
Lognorm2	0.1997	Std. Deviation	0.0340	0.03035	0.03022	0.0306	0.0307	0.0307	0.0307	0.0340	0.0309	0.0313	0.0440	0.0325	0.04171	0.0417	0.0346	0.0517
Loglogistic	0.2018	Skewness	0.3861	0.3550	0.3536	0.5349	0.5380	0.5446	0.5446	1.0122	0.6276	0.7585	-2.6578	-0.3854	2.7139	2.7136	-0.7771	-0.5657
Pearson6	0.2039	Kurtosis	3.0174	3.1891	3.1875	3.4865	3.4824	3.5319	3.5319	6.9284	3.7480	4.1099	18.3174	3.0542	22.7328	22.7233	3.1998	2,4000
Pearson5 Burr12	0.2103	= Percentiles																
Weibull	0.2120	5%	0.1301	0.12427	0.12445	0.1256	0.1256	0.1255	0.1255	0.1229	0.1259	0.1266	0.1133	0.1132	0.12898	0.1290	0.1063	0.0491
Dagum	0.2461	10%	0.1301	0.13339	0.13354	0.1339	0.1339	0.1339	0.1339	0.1332	0.1341	0.1343	0.1272	0.1273	0.13458	0.1346	0.1232	0.0694
Frechet	0.2461	15%	0.1301	0.13339	0.13992	0.1399	0.1339	0.1399	0.1399	0.1332	0.1341	0.1399	0.1272	0.12/3	0.13455	0.1346	0.1346	0.0850
RetaGeneral	0.2794	20%	0.1301	0.139/9	0.15992	0.1448	0.1599	0.1599	0.1399	0.1399	0.1399	0.1599	0.1367	0.1567	0.13005	0.1369	0.1435	0.0982
Triang	0.3513											0.1446				0.1426		
Rayleigh	0.4296	25%	0,1488	0.14961	0.14971	0.1492	0.1492	0.1492	0.1492	0.1497	0.1491		0.1500	0.1500	0.14607		0.1510	0.1098
Uniform	0.4742	30%	0.1488	0.15382	0.15390	0.1532	0.1532	0.1532	0.1532	0.1538	0.1530	0.1527	0.1554	0.1554	0.14943	0.1494	0.1575	0.1202
Expon	0.5328	35%	0.1488	0.15779	0.15785	0.1571	0.1571	0.1571	0.1571	0.1576	0.1568	0.1564	0.1603	0.1603	0.15277	0.1528	0.1634	0.1299
Pareto2	0.5328	40%	0.1488	0.16162	0.16167	0.1608	0.1608	0.1608	0.1608	0.1613	0.1605	0.1600	0.1648	0.1648	0.15616	0.1562	0.1687	0.1388
Kumaraswa	0.5496	45%	0.1760	0.16539	0.16542	0.1645	0.1645	0.1645	0.1645	0.1648	0.1642	0.1637	0.1691	0.1691	0.15967	0.1597	0.1737	0.1472
Levy	0.6149	50%	0.1760	0.16915	0.16916	0.1683	0.1682	0.1683	0.1683	0.1684	0.1679	0.1674	0.1732	0.1732	0.16336	0.1634	0.1784	0.1552
ChiSq	0.6394	55%	0.1760	0.17297	0.17297	0.1721	0.1721	0.1721	0.1721	0.1721	0.1717	0.1712	0.1772	0.1773	0.16731	0.1673	0.1829	0.1628
Pareto	N/A	60%	0.1803	0.17690	0.17689	0.1760	0.1760	0.1760	0.1760	0.1759	0.1757	0.1752	0.1813	0.1813	0.17161	0.1716	0.1872	0.1700
] Pert	N/A	65%	0.1803	0.18104	0.18100	0.1802	0.1802	0.1802	0.1802	0.1799	0.1799	0.1794	0.1854	0.1854	0.17640	0.1764	0.1914	0.1770
		70%	0.1803	0.18546	0.18541	0.1848	0.1848	0.1847	0.1847	0.1844	0.1844	0.1840	0.1896	0.1896	0.18186	0.1818	0.1956	0.1836
		75%	0.1803	0.19031	0.19024	0.1898	0.1896	0.1897	0.1897	0.1894	0.1895	0.1892	0.1940	0.1940	0.18528	0.1883	0.1997	0.1901
		80%	0.1803	0.19582	0.19572	0.1955	0.1955	0.1955	0.1955	0.1953	0.1953	0.1952	0.1988	0.1988	0.19616	0.1962	0.2038	0.1963
		85%	0.2195	0.20236	0.20223	0.2024	0.2024	0.2024	0.2024	0.2027	0.2024	0.2025	0.2042	0.2042	0.20646	0.2064	0.2081	0.2024
		90%	0.2195	0.21080	0.21063	0.2114	0.2114	0.2114	0.2114	0.2130	0.2117	0.2023	0.2107	0.2107	0.22142	0.2214	0.2127	0.2082
		95%	0.2195	0.22372	0.22349	0.2255	0.2255	0.2256	0.2256	0.2307	0.2264	0.2122	0.2200	0.2200	0.24871	0.2487	0.2127	0.2139
			0.2195	0.22372	0.22349	0.2255	0.2255	0.2236	0.2256	0.2307	0.2264	0.2211	0.2200	0.2200	0.24671	0.2407	0.2176	0.2139
		- Information Criteria		-10.8676	-10.8674			-10.8833	-10.8833	-10.4923	9.1232	-10.8751		-10.5011	N/A			
		Akaike (AIC)				9.1024	-10.8975						N/A			9.4336	9.4551	-9.4367
		Bayesian (BIC)		-17.6487	-17.6485	-16.0693	-17.6786	-17.6644	-17.6644	-17.2735	-16,0485	-17.6563	-14.0633	-17.2822	-14.1287	-15.7381	-15.7166	-16.2178
		Av. LogL		2.0868	2.0867	2.0898	2.0898	2.0883	2.0883	2.0492	2.0877	2.0875	2.0501	2.0501	2.0566	2.0566	2.0545	1.9437
		= Chi-Squared Test - [*	Values unavailable															
		Chi-Sq Statistic		0.2000	0.2000	0.2000	0.2000	0.2000	0.2000	0.2000	0.2000	0.2000	0.2000	0.2000	0.2000	0.2000	0.2000	0.2000
		P-Value*		N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
		Cr. Value @ 0.750*		N/A	N/A.	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
		Cr. Value @ 0.500*		N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
		Cr. Value @ 0.250*		N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A.	N/A	N/A	N/A	N/A	N/A	N/A
		Cr. Value @ 0.150*		N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
		Cr. Value @ 0.100*		N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
		Cr. Value @ 0.050*		N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
		Cr. Value @ 0.025*		N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
		Cr. Value @ 0.010*		N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
		Cr. Value @ 0.005*		N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
		Cr. Value @ 0.001*		N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
			and a second second	N/A	nve.	N/A	N/A	R/A	PK/A	Rea.	PL/A	N/A	11/14	NUA.	R/A	PE/A	new.	R/A
		Chi-Sq Test (Binning	intormatión)	0.0000	0.0005	0.0000	0.0000	0.0007	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0505	
		Bin #1 : Minimum		0.0000	0.0000	0.0000	0.0000	0.0000		0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
		Bin #1 : Maximum		0.16915	0.16916	0.1683	0.1682	0.1683	0.1683	0.1684	0.1679	0.1674	0.1732	0.1732	0.16336	0.1634	0.1784	0.1552
		Bin #1 : Input		2,0000	2.0000	2.0000	2.0000	2.0000	2.0000	2.0000	2.0000	2.0000	2.0000	2.0000	2.0000	2.0000	3.0000	2.0000
		Bin #1 : Fit		2.5000	2.5000	2.5000	2.5000	2.5000	2.5000	2.5000	2.5000	2.5000	2.5000	2.5000	2.5000	2.5000	2.5000	2.5000
		Bin #2 : Minimum		0.16915	0.16916	0.1683	0.1682	0.1683	0.1683	0.1684	0.1679	0.1674	0.1732	0.1732	0.16336	0.1634	0.1784	0.1552
		Bin #2 : Maximum		+ Infinity	+Infinity	+Infinity	+Infinity	+Infinity	+ Infinity	+Infinity	+Infinity	+Infinity	+Infinity	+Infinity	+Infinity	+ Infinity	0.2266	0.2195

1.1.2 Transformer event rate – fault (continuous)

The @risk software found that the Erlang distribution is the most appropriate fit.

Figure 1-2: Transformer event rate (fault) – distribution fit using K-S

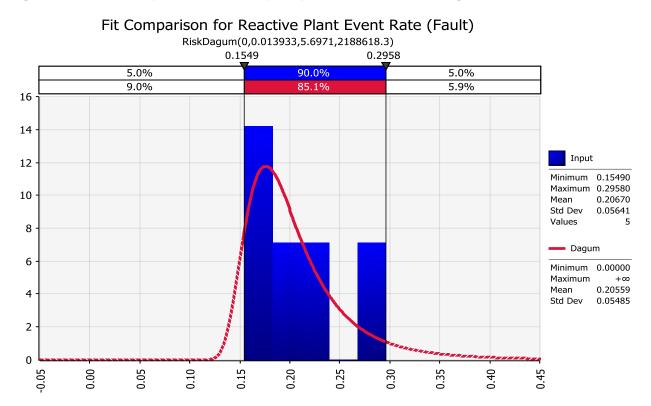
Figure 1.2: Transformer event rate	(fault) – statistics table using K-S
------------------------------------	--------------------------------------

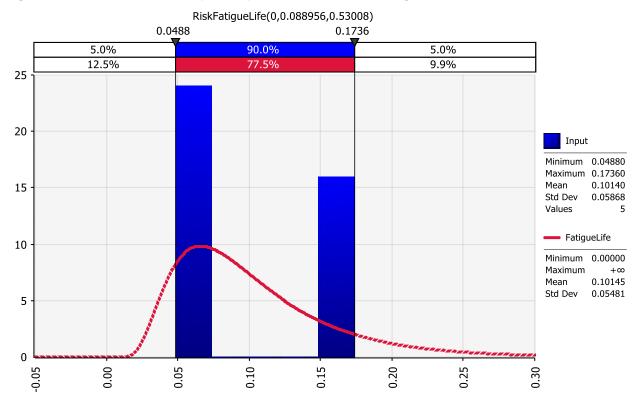
By K-S	~		Input	Erlang	Gamma	Lognorm2	Lognorm	Burr12	Weibull	BetaGeneral	FatigueLife	Invgauss	Pearson6	Pearson5	Frechet	Rayleigh	Triang	Uniform
Fit	Value	Distribution Statistics																
ang	0.2062	Minimum	0.0625	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
mma	0.2064	Maximum	0.1563	+Infinity	-Infinity	-Infinity	+Infinity	+Infinity	+Infinity	0.1563	+Infinity	+Infinity	- Infinity	+ Infinity	+Infinity	+ Infinity	0.1563	0.1954
morm2	0.2195	Mean	0.1197	0.1197	0.1197	0.1204	0.1204	0.1203	0.1203	0.1237	0.1197	0.1197	0.121588283	0.1216	0.1337	0.1103	0.1042	0.0977
norm	0.2195	Mode	0.0648 [est]	0.1077	0.1080	0.1020	0.1020	0.1243	0.1243	0.1563	0.1008	0.1006	0.095884178	0.0959	0.0852	0.0880	0.1563	0.0000
r12	0.2202	Median	0.1260	0.1157	0.1158	0.1139	0.1139	0.1214	0.1214	0.1394	0.1133	0.1132	0.111581163	0.1116	0.1086	0.1036	0.1105	0.0977
ibull	0.2203	Std. Deviation	0.0381	0.0378	0.0374	0.0412	0.0412	0.0314	0.0314	0.0374	0.0407	0.0408	0.047836039	0.0478	0.1062	0.0576	0.0368	0.0564
aGeneral	0.2210	Skewness	-0.8672	0.6325	0.6255	1.0661	1.0661	-0.1495	-0.1509	-1.2561	0.9987	1.0228	1.8519	1.8619	+Infinity	0.6311	-0.5657	0.0000
	0.2245	Kurtosis	2.9611	3.6000	3.5869	5.0867	5.0867	2.7808	2.7869	3,6523	4.6765	4.7436	10.7108	10.7109	+Infinity	3.2451	2.4000	1.8000
pauss rson6	0.2254	= Percentiles	2.3011	3.0000	5,5005	2.0001	3,0007	217000	2.1005	20000	4,0705	4,1450	10.1100	1011103	- mining	212421	24000	
rsone	0.2334	5%	0.0625	0.0649	0.0654	0.0659	0.0659	0.0668	0.0666	0.0418	0.0656	0.0657	0.066006714	0.0660	0.0642	0.0282	0.0349	0.00977
thet	0.2572	10%	0.0625	0.0745	0.0034	0.0539	0.0035	0.0086	0.0786	0.0635	0.0738	0.0739		0.0080	0.0705	0.0404	0.0349	0.0195
leigh	0.3027												0.073532716					
ng	0.3161	15%	0.0625	0.0814	0.0818	0.0807	0.0807	0.0869	0.0869	0.0800	0.0801	0.0801	0.079280172	0.0793	0.0756	0.0502	0.0605	0.0293
form	0.3323	20%	0.0625	0.0872	0.0876	0.0861	0.0861	0.0935	0.0935	0.0934	0.0854	0.0854	0.084288702	0.0843	0.0802	0.0588	0.0699	0.0391
taraswa	0.3815	25%	0.1040	0.0925	0.0928	0.0910	0.0910	0.0991	0.0991	0.1045	0.0903	0.0903	0.088930999	0.0889	0.0847	0.0667	0.0782	0.0488
on	0.4068	30%	0.1040	0.0973	0.0976	0.0957	0.0957	0.1042	0.1042	0.1139	0.0950	0.0949	0.093397388	0.0934	0.0891	0.0743	0.0856	0.0586
to2	0.4068	35%	0.1040	0.1020	0.1022	0.1002	0.1002	0.1068	0.1088	0.1219	0.0995	0.0994	0.097808750	0.0978	0.0936	0.0817	0.0925	0.0684
	0.5925	40%	0.1040	0.1066	0.1067	0.1047	0.1047	0.1132	0.1131	0.1287	0.1040	0.1039	0.102256375	0.1023	0.0983	0.0889	0.0989	0.0782
59	0.6926	45%	0.1260	0.1111	0.1112	0.1092	0.1092	0.1173	0.1173	0.1345	0.1086	0.1085	0.106820406	0.1068	0.1032	0.0962	0.1048	0.0879
um	0.8000	50%	0.1260	0.1157	0.1158	0.1139	0.1139	0.1214	0.1214	0.1394	0.1133	0.1132	0.111581163	0.1116	0.1086	0.1036	0.1105	0.0977
ogistic	N/A	55%	0.1260	0.1204	0,1205	0.1187	0.1187	0.1254	0.1254	0.1435	0.1181	0.1180	0.116628507	0,1166	0.1146	0.1112	0.1159	0.1075
eto	N/A	60%	0.1496	0.1254	0.1254	0.1239	0.1239	0.1294	0.1295	0.1469	0.1233	0.1232	0.122072620	0.1221	0.1213	0.1191	0.1211	0.1172
	N/A	65%	0,1495	0.1306	0.1305	0.1294	0.1294	0.1336	0.1336	0.1497	0.1289	0.1288	0.128059382	0.1281	0.1289	0.1275	0.1260	0.1270
		70%	0.1496	0.1363	0.1361	0.1356	0.1356	0.1378	0.1379	0.1518	0.1351	0.1350	0.134796289	0.1345	0.1380	0.1365	0.1308	0.1368
		75%	0.1496	0.1426	0.1424	0.1330	0.1330	0.1424	0.1424	0.1535	0.1420	0.1419	0.142601535		0.1491	0.1465	0.1354	0.1465
														0.1426				
		80%	0.1496	0.1498	0.1495	0.1507	0.1507	0.1474	0.1474	0.1547	0.1502	0.1501	0.152009024	0.1520	0.1634	0.1579	0.1398	0.1563
		85%	0.1563	0.1586	0.1581	0.1607	0.1607	0.1531	0.1531	0.1555	0.1602	0.1602	0.164031087	0.1640	0.1831	0.1714	0.1441	0.1661
		90%	0.1563	0.1700	0.1695	0.1744	0.1744	0.1601	0.1601	0.1560	0.1737	0.1738	0.180989538	0.1810	0.2140	0.1888	0.1483	0.1758
		95%	0.1563	0.1880	0.1872	0.1968	0.1968	0.1701	0.1701	0.1563	0.1956	0.1959	0.210579406	0.2106	0.2773	0.2154	0.1523	0.1856
		- Information Criteria																
		Akaike (AIC)		-8.9961	-8.9974	-8.5450	-8.5450	N/A	-9.9655		11.4263	-8.5460	11.9827	-8.0173	13.0272	-13.5528	-12.3246	-12.9950
		Bayesian (BIC)		-15.7772	-15.7785	-15.3262	-15.3262	-13.5278	-16.7466	-	-13.7454	-15.3272	-13.1890	-14.7984	-12.1445	-15.2767	-19.1058	-14,7189
		Av. LogL		1.8996	1.8997	1.8545	1.8545	1.9966	1.9966		1.8574	1.8546	1.8017	1.8017	1.6973	1.6886	2.2325	1.6328
		- Chi-Squared Test - [*)	alues unavailable	without running a	bootstrapl													
		Chi-Sq Statistic		0.2000	0.2000	0.2000	0.2000	0.2000	0.2000	0.2000	0.2000	0.2000	0.2000	0.2000	0.2000	1.8000	0.2000	1.8000
		P-Value*		N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
		Cr. Value @ 0.750*		N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
		Cr. Value @ 0.500*		N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
					N/A	N/A			N/A	N/A	N/A		N/A		N/A	N/A		N/A
		Cr. Value @ 0.250*		N/A			N/A	N/A				N/A		N/A			N/A	
		Cr. Value @ 0.150*		N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
		Cr. Value @ 0.100*		N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
		Cr. Value @ 0.050*		N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
		Cr. Value @ 0.025*		N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
		Cr. Value @ 0.010*		N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
		Cr. Value @ 0.005*		N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
		Cr. Value @ 0.001*		N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
		- Chi-Sa Test (Binning In	formation)															
		Bin #1 : Minimum		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
		Ein #1 : Maximum		0.1157	0.1158	0.1139	0.1139	0.1214	0.1214	0.1394	0.1133	0.1132	0.111581163	0.1116	0.1086	0.1036	0.1105	0.0977
																		1.0000
		Ein #1 : Input		2.0000	2.0000	2.0000	2.0000	2.0000	2.0000	3.0000	2.0000	2.0000	2.0000	2.0000	2.0000	1.0000	2.0000	
		Bin #1 : Fit		2.5000	2.5000	2.5000	2.5000	2.5000	2.5000	2.5000	2,5000	2.5000	2.5000	2.5000	2.5000	2.5000	2.5000	2.5000
		Bin #2 : Minimum		0.1157	0.1158	0.1139	0.1139	0.1214	0.1214	0.1394	0.1133	0.1132	0.111581163	0.1116	0.1086	0.1036	0.1105	0.0977
		Ein #2 : Maximum		+Infinity	-Infinity	+Infinity	+Infinity	+Infinity	+Infinity	0.1563	+Infinity	+Infinity	+Infinity	+Infinity	+Infinity	+Infinity	0.1563	0.1954

1.1.3 Reactive plant event rate – fault (continuous)

The @risk software found that the Dagum distribution is the most appropriate fit.

Figure 1-3: Reactive plant event rate (fault) – distribution fit using K-S



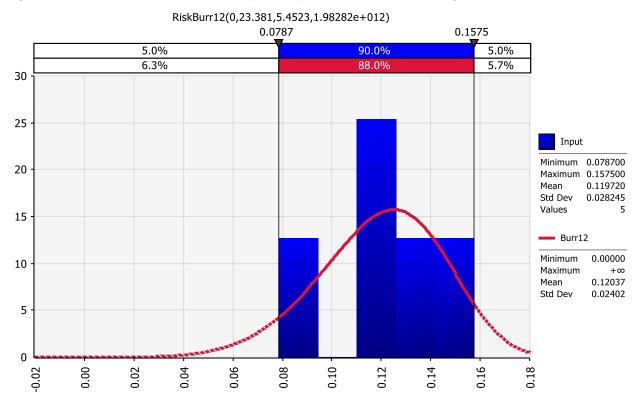

Figure 1-4: Reactive plant event rate (fault) – statistics table using K-S

nk By K-5	~		Input	Dagum	Frechet	Pearson5	Pearson6	Lognorm	Lognorm2	Invgauss	FatigueLife	Erlang	Gamma	Weibull	Pert	Triang	BetaGeneral	Rayleigh
Fit	Value	Distribution Statistic	5															
Dagum	0.1686	Minimum	0.1549	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Frechet	0.1686	Maximum	0.2958	+ Infinity	+Infinity	+ Infinity	+Infinity	+Infinity	+Infinity	+ Infinity	+Infinity	+Infinity	+ Infinity	+Infinity	0.3202	0.2958	0.3045	+Infinity
Pearson5	0.2005	Mean	0.2067	0.2056	0.2056	0.2064	0.20639745	0.2065	0.2065	0.2067	0.2067	0.2067	0.2067	0.2064	0.2088	0.1972	0.2118	0.1886
Pearson6	0.2005	Mode	0.1584 [est]	0.1756	0.1756	0.1868	0.18676989	0.1907	0.1907	0.1906	0.1907	0.1952	0.1954	0.2131	0.2331	0.2958	0.2582	0.1505
Lognorm	0.2116	Median	0.1884	0.1927	0.1927	0.1994	0.19940192	0.2011	0.2011	0.2013	0.2013	0.2029	0.2030	0.2082	0.2145	0.2092	0.2211	0.1771
Lognorm2	0.2116	Std. Deviation	0.0564	0.0548	0.0549	0.0486	0.04860608	0.0481	0.0481	0.0481	0.0480	0.0487	0.0483	0.0547	0.0577	0.0697	0.0594	0.0986
Invgauss	0.2127	Skewness	1,1959	2.9725	2.9726	0.9973	0.9973	0.7120	0.7120	0.6977	0.6907	0.4714	0.4670	-0.1366	-0.4221	-0.5657	-0.6107	0.6311
FatigueLife	0.2131	Kurtosis	3.9480	28.6750	28.6773	4.9592	4.9592	3.9146	3.9146	3.8113	3.8085	3.3333	3.3271	2.7769	2.5709	2.4000	2.6932	3.2451
Erlang	0.2210	Percentiles	3.5400	20.0130	20.0113	4.5552	4.0002	5.5140	3.3140	202113	3.0003	2.2222	July 1	2.1763	2.3703	2.4000	2.0002	2.2421
Gamma	0.2227		0.1549	0.1490	0.1490	0.1407	0.14070655	0.1377	0.1377	0.1380	0.1380		0.1342	0.1130	0.1048	0.0661	0.1003	0.0482
Weibull	0.2357	5%										0.1336						
Pert Triang	0.2535	10%	0.1549	0.1561	0.1561	0.1514	0.15143646	0.1498	0.1498	0.1499	0.1499	0.1472	0.1478	0.1338	0.1280	0.0935	0.1261	0.0691
	0.2742	15%	0.1549	0.1615	0.1615	0.1593	0,15930691	0.1584	0.1584	0.1586	0.1586	0.1570	0.1574	0.1481	0.1444	0.1146	0.1445	0.0858
BetaGeneral Rayleigh	0.2773	20%	0.1549	0.1662	0.1662	0.1660	0.16595921	0.1657	0.1657	0.1658	0.1658	0.1650	0.1654	0.1595	0.1577	0.1323	0.1594	0.1005
Uniform		25%	0.1690	0.1706	0.1706	0.1720	0.17196681	0.1722	0.1722	0.1723	0.1723	0.1721	0.1724	0.1693	0.1692	0.1479	0.1722	0.1141
Expon	0.4189	30%	0.1690	0.1749	0.1749	0.1776	0.17761287	0.1782	0.1782	0.1783	0.1784	0.1787	0.1789	0.1781	0.1796	0.1620	0.1836	0.1271
Kumaraswa.	0.5275	35%	0.1690	0.1792	0.1792	0.1831	0.18306851	0.1840	0.1840	0.1841	0.1842	0.1849	0.1851	0.1862	0.1890	0.1750	0.1939	0.1396
Levy	0.5845	40%	0.1690	0.1835	0.1835	0.1885	0.18845454	0.1897	0.1897	0.1898	0.1899	0.1909	0.1911	0.1938	0.1979	0.1871	0.2035	0.1521
ChiSa	0.5865	45%	0.1884	0.1880	0.1880	0.1939	0.19386889	0.1954	0.1954	0.1955	0.1956	0.1969	0.1970	0.2011	0.2064	0.1984	0.2125	0.1645
Burr12	N/A	50%	0.1884	0.1927	0.1927	0.1994	0.19940192	0.2011	0.2011	0.2013	0.2013	0.2029	0.2030	0.2082	0.2145	0.2092	0.2211	0.1771
Logiogistic	N/A	55%	0.1884	0.1978	0.1978	0.2051	0.20514733	0.2070	0.2070	0.2072	0.2073	0.2090	0.2090	0.2152	0.2224	0.2194	0.2292	0.1901
Pareto	N/A	60%	0.2254	0.2033	0.2033	0.2112	0.21121318	0.2132	0.2132	0.2134	0.2135	0.2153	0.2153	0.2223	0.2302	0.2291	0.2371	0.2037
Pareto2	N/A	65%	0.2254	0.2095	0.2095	0.2177	0.21773583	0.2197	0.2197	0.2200	0.2201	0.2220	0.2219	0.2295	0.2380	0.2385	0.2448	0.2180
			0.2254	0.2095										0.2295	0.2380	0.2385		0.2180
		70%			0.2165	0.2249	0.22490230	0.2269	0.2269	0.2272	0.2272	0.2292	0.2290				0.2524	
		75%	0.2254	0.2249	0.2249	0.2330	0.23299111	0.2348	0.2348	0.2352	0.2352	0.2372	0.2369	0.2450	0.2538	0.2562	0.2599	0.2505
		80%	0.2254	0.2351	0.2351	0.2425	0.24245783	0.2440	0.2440	0.2444	0.2445	0.2462	0.2458	0.2537	0.2621	0.2646	0.2674	0.2699
		85%	0.2958	0.2486	0.2486	0.2541	0.25414474	0.2552	0.2552	0.2556	0.2557	0.2570	0.2566	0.2637	0.2710	0.2727	0.2750	0.2931
		90%	0.2958	0.2682	0.2682	0.2699	0.26992848	0.2700	0.2700	0.2704	0.2704	0.2711	0.2705	0.2760	0.2810	0.2806	0.2830	0.3229
		95%	0.2958	0.3043	0.3043	0.2958	0.29578025	0.2936	0.2936	0.2938	0.2937	0.2928	0.2920	0.2936	0.2931	0.2883	0.2918	0.3683
		Information Criteria																
		Akaike (AIC)		N/A	12.6564	-6.7539	13.2462	-6.5464	-6.5464	-6.5738	13.4316	-6.3048	-6.3057	-5.3861	-5.2436	-5.2530	14.8667	-8.5092
		Bayesian (BIC)		-10.9058	-12.5153	-13.5350	-11.9255	-13.3275	-13.3275	-13.3549	-11.7401	-13.0859	-13.0868	-12.1672	-12.0247	-12.0341	-10.3050	-10.2331
		Av. LogL		1.7344	1.7344	1.6754	1.6754	1.6546	1.6546	1.6574	1.6568	1.6305	1.6306	1.5386	1.5244	1.5253	1.5133	1.1843
		- Chi-Squared Test - ["	Valuer uppositable															
		Chi-Sq Statistic	Turdes difutanaute	0.2000	0.2000	0.2000	0.2000	0.2000	0.2000	0.2000	0.2000	0.2000	0.2000	0.2000	0.2000	0.2000	0.2000	0.2000
		P-Value*		N/A	0.2000 N/A	N/A	N/A	0.2000 N/A	N/A	N/A	N/A	0.2000 N/A	N/A	0.2000 N/A	N/A	N/A	0.2000 N/A	0.2000 N/A
		Cr. Value @ 0.750*		N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
		Cr. Value @ 0.500*		N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
		Cr. Value @ 0.250*		N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
		Cr. Value @ 0.150*		N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
		Cr. Value @ 0.100*		N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
		Cr. Value @ 0.050*		N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
		Cr. Value @ 0.025*		N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
		Cr. Value @ 0.010*		N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
		Cr. Value @ 0.005*		N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
		Cr. Value @ 0.001*		N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
		Chi-Sq Test (Binning	Information)															
		Bin #1: Minimum		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
		Bin #1: Maximum			0.1927	0.1994	0.19940192	0.2011		0.2013	0.2013		0.2030	0.2052	0.2145	0.2092		0.1771
				0.1927	3,0000			3.0000	0.2011 3.0000	3.0000	3.0000	0.2029	3.0000	3.0000		3.0000	0.2211 3.0000	2,0000
		Bin #1 : Input				3.0000	3.0000								3.0000			
		Bin #1: Fit		2.5000	2,5000	2.5000	2.5000	2.5000	2.5000	2.5000	2.5000	2.5000	2.5000	2.5000	2.5000	2.5000	2.5000	2.5000
		Bin #2 : Minimum		0.1927	0.1927	0.1994	0.19940192	0.2011	0.2011	0.2013	0.2013	0.2029	0.2030	0.2082	0.2145	0.2092	0.2211	0.1771
		8in #2 : Maximum		+ Infinity	+Infinity	+Infinity	+Infinity	+Infinity	+Infinity	+ Infinity	+ Infinity	+Infinity	+ Infinity	+Infinity	0.3202	0.2958	0.3045	+Infinity

1.1.4 Lines event rate – forced (continuous)

The @risk software found that the FatigueLife distribution is the most appropriate fit.

Figure 1-5: Lines event rate (forced) – distribution fit using K-S

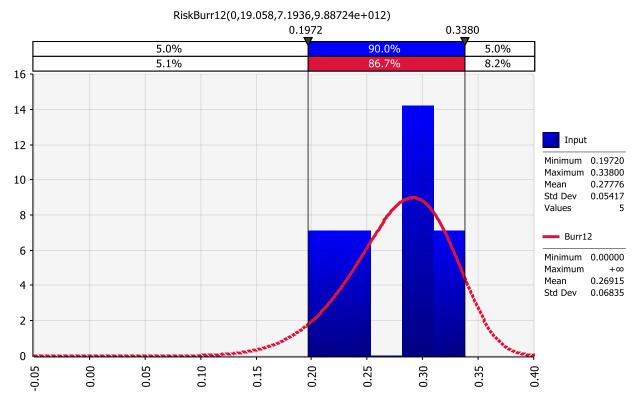


ik By K-S	×		Input	FatigueLife	Invgauss	Loglogistic	Lognorm	Lognorm2	Pearson6	Pearson5	Uniform	Dagum	Frechet	Rayleigh	Gamma	Erlang	Weibull	Pert
Fit	Value	Distribution Statistics	0.0488	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
FatigueLite Invgauss	0.2577	Minimum Maximum	0.1736	+Infinity	+Infinity	+Infinity	+ Infinity	+Infinity	+Infinity	+ Infinity	0.0000	+ Infinity	+Infinity	+ Infinity	+Infinity	+ Infinity	+infinity	0.2552
nvgauss Loglogistic	0.2583		0.1736	+ Infinity 0.1015	+ Infinity 0.1014	+infinity 0.1033	+ Infinity 0.1014				0.2170	+ infinity 0.105061		+ Infinity 0.1012	+Infinity 0.1014	+ Infinity 0.1014		0.2552
Lognorm	0.2591	Mean						0.1014	0.102863107	0.1029	0.0000	0.105061	0.1051	0.1012	0.1014		0.1022	0.1020
Lognorm2	0.2606		0.0519 [est]	0.0661	0.0655	0.0685	0.0673	0.0673	0.062760131	0.0628			0.0595			0.0761		
Pearson6	0.2617	Median	0.0720	0.0890	0.0684	0.0858	0.0884	0.0554	0.084684623	0.0847	0.1085	0.080103	0.0801	0.0951	0.0927	0.0931	0.0969	0.0990
Pearson5	0.2617	Std. Deviation	0.0587	0.0548	0.0556	0.0819	0.0568	0.0568	0.070481476	0.0705	0.0626	0.123109	0.1231	0.0529	0.0520	0.0507	0.0511	0.0473
Uniform	0.2682	Skewness	0.5721	1.5340	1.6452	97.9763	1.8568	1.8568	5.1664	5.1664	0.0000	N/A	+Infinity	0.6311	1.0249	1.0000	0.5671	0.2710
Dagum	0.2690	Kurtosis	0.0811	6.8742	7.5109	+Infinity	9.6965	9.6965	397.2956	397.3145	1.8000	N/A	+Infinity	3.2451	4.5755	4.5000	3.1321	2.4313
Frechet	0.2690	- Percentiles																
Rayleigh	0.2719	5%	0.0488	0.0382	0.0384	0.0325	0.0374	0.0374	0.040557007	0.0406	0.0109	0.043554	0.0436	0.0259	0.0334	0.0346	0.0280	0.0297
Gamma	0.2758	10%	0.0488	0.0457	0.0458	0.0416	0.0453	0.0453	0.046976365	0.0470	0.0217	0.048597	0.0486	0.0371	0.0431	0.0442	0.0395	0.0412
Erlang	0.2830	15%	0.0488	0.0517	0.0517	0.0484	0.0514	0.0514	0.052111637	0.0521	0.0326	0.052677	0.0527	0.0460	0.0506	0.0517	0.0486	0.0503
Weibull Pert	0.2896	20%	0.0488	0.0571	0.0570	0.0543	0.0570	0.0570	0.056750344	0.0568	0.0434	0.056410	0.0564	0.0539	0.0572	0.0582	0.0565	0.0583
Expon	0.3820	25%	0.0569	0.0623	0.0621	0.0597	0.0622	0.0622	0.061185436	0.0612	0.0543	0.060026	0.0600	0.0612	0.0633	0.0643	0.0637	0.0656
Pareto2	0.3820	30%	0.0569	0.0674	0.0671	0.0649	0.0672	0.0672	0.065575251	0.0656	0.0651	0.063654	0.0637	0.0682	0.0692	0.0701	0.0706	0.0726
Kumaraswa.	0.4189	35%	0.0569	0.0725	0.0722	0.0700	0.0723	0.0723	0.070028880	0.0700	0.0760	0.067390	0.0674	0.0749	0.0750	0.0757	0.0772	0.0793
Triang	0.4280	40%	0.0569	0.0778	0.0773	0.0751	0.0775	0.0775	0.074637507	0.0746	0.0868	0.071317	0.0713	0.0816	0.0808	0.0814	0.0838	0.0859
Levy	0.4972	45%	0.0720	0.0832	0.0827	0.0803	0.0828	0.0828	0.079490039	0.0795	0.0977	0.075521	0.0755	0.0883	0.0866	0.0872	0.0903	0.0924
ChiSq	0.6769	50%	0.0720	0.0890	0.0884	0.0858	0.0884	0.0884	0.084684623	0.0647	0.1085	0.080103	0.0801	0.0951	0.0927	0.0931	0.0969	0.0990
BetoGenerol	N/A	55%	0.0720	0.0951	0.0944	0.0917	0.0944	0.0944	0.090339923	0.0903	0.1194	0.085190	0.0852	0.1020	0.0990	0.0993	0.1036	0.1057
Burr12	N/A	60%	0.1557	0.1017	0.1010	0.0981	0.1009	0.1009	0.096610236	0.0966	0.1302	0.090955	0.0910	0.1093	0.1057	0.1058	0.1106	0.1126
Pareto	N/A	65%	0.1557	0.1091	0.1084	0.1052	0.1081	0.1081	0.103709538	0.1037	0.1411	0.097642	0.0976	0.1170	0.1130	0.1129	0.1180	0.1197
		70%	0.1557	0.1174	0.1167	0.1135	0.1163	0.1163	0.111953588	0.1120	0.1519	0.105625	0.1056	0.1253	0.1210	0.1207	0.1260	0.1273
		75%	0.1557	0.1270	0.1263	0.1233	0.1258	0.1258	0.121842529	0.1218	0.1628	0.115512	0.1155	0,1344	0.1300	0.1295	0.1348	0.1355
		80%	0.1557	0.1385	0.1379	0.1355	0.1373	0.1373	0.134242518	0.1342	0.1736	0.128397	0.1284	0.1448	0.1406	0.1398	0.1447	0.1445
		85%	0.1736	0.1531	0.1528	0.1520	0.1520	0.1520	0.150853451	0.1509	0.1845	0.146510	0.1465	0.1573	0.1536	0.1524	0.1565	0.1548
		90%	0.1736	0.1733	0,1735	0.1770	0.1727	0.1727	0.175742708	0.1757	0.1953	0.175478	0.1755	0,1733	0.1711	0.1694	0.1716	0.1673
		95%	0.1736	0.2074	0.2088	0.2265	0.2088	0.2088	0.223254441	0.2233	0.2062	0.236787	0.2368	0,1976	0.1991	0.1966	0.1945	0.1847
		- Information Criteria																
		Akaike (AJC)		13.2488	-6.7602	-5.9065	-6.5584	-6.5584	13.2433	-6.7567	-11.9452	N/A	13.0168	-12.7414	-6.3177	-6.3111	-6.0932	-6.4286
		Bayesian (BIC)		-11.9229	-13.5413	-12.6876	-13.3396	-13.3396	-11.9284	-13.5378	-13.6691	-10.5454	-12.1549	-14.4653	-13.0988	-13.0922	-12.8744	-13.2097
		Av. LogL		1.6751	1.6760	1.5906	1.6558	1.6558	1.6757	1.6757	1.5279	1.6983	1.6983	1.6075	1.6318	1.6311	1.6093	1.6429
		- Chi-Squared Test - [*	alues unavailab															
		Chi-Sg Statistic		0.2000	0.2000	0.2000	0.2000	0.2000	0.2000	0.2000	0.2000	0.2000	0.2000	0.2000	0.2000	0.2000	0.2000	0.2000
		P-Value*		N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
		Cr. Value @ 0.750*		N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
		Cr. Value @ 0.500*		N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
		Cr. Value @ 0.250*		N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
		Cr. Value @ 0.150*		N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
		Cr. Value @ 0.100*		N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
		Cr. Value @ 0.050*		N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
		Cr. Value @ 0.050*		N/A	N/A	N/A N/A	N/A	N/A N/A	N/A N/A	N/A	N/A	N/A N/A	N/A	N/A N/A	N/A N/A	N/A	N/A	N/A
																		N/A N/A
		Cr. Value @ 0.010*		N/A N/A	N/A N/A	N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A	N/A N/A	N/A N/A	N/A N/A	N/A	N/A N/A	N/A N/A	N/A
		Cr. Value @ 0.005*				N/A					N/A				N/A			
		Cr. Value @ 0.001*		N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
		- Chi-Sq Test (Binning I	nformation)															
		Bin #1 : Minimum		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
		Ein #1 : Maximum		0.0890	0.0684	0.0858	0.0884	0.0884	0.084684623	0.0847	0.1085	0.080103	0.0801	0.0951	0.0927	0.0931	0.0969	0.0990
		Ein #1 : Input		3.0000	3.0000	3.0000	3.0000	3.0000	3.0000	3.0000	3.0000	3.0000	3.0000	3.0000	3.0000	3.0000	3.0000	3.0000
		Bin #1 : Fit		2.5000	2.5000	2.5000	2.5000	2.5000	2.5000	2.5000	2.5000	2.5000	2.5000	2.5000	2.5000	2.5000	2.5000	2.5000
		Bin #2 : Minimum		0.0890	0.0854	0.0858	0.0884	0.0884	0.084684623	0.0847	0.1085	0.080103	0.0801	0.0951	0.0927	0.0931	0.0969	0.0990
		Bin #2 : Maximum		+Infinity	+Infinity	+Infinity	+Infinity	+Infinity	+Infinity	+Infinity	0.2170	+Infinity	+Infinity	+Infinity	+Infinity	+ Infinity	+Infinity	0.2552

1.1.5 Transformer event rate – forced (continuous)

The @risk software found that the Burr12 distribution is the most appropriate fit.

Figure 1-7: Transformer event rate (forced) – distribution fit using K-S

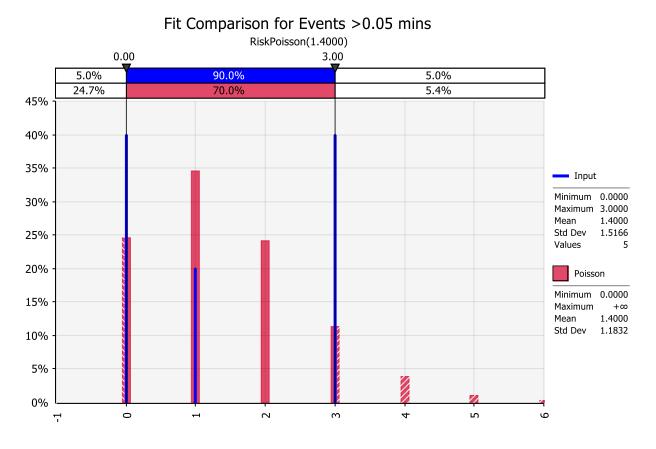

Figure 1-8: Transformer event rate	(forced) – statistics table using K-S
i igule 1-0. Italisionnei event late	(1010eu) = 3(a(1310e) able using N-3)

nk By K-S	~		Input	Burr12	Weibull	Dagum	Pert	Erlang	Gamma	Lognorm	Lognorm2	FatigueLife	Invgauss	Pearson6	Pearson5	Frechet	Triang	Uniform
Fit	Value	- Distribution Statistic																
Burr12	0.2356	Minimum	0.0787	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Weibull	0.2356	Maximum	0.1575	 Infinity 	+ Infinity	+Infinity	0.1621	+Infinity	+Infinity	-Infinity	-Infinity	+Infinity	+ Infinity	-Infinity	+Infinity	+Infinity	0.1575	0.1969
Dagum	0.2425	Mean	0.1197	0.1196	0.1198	0.1199	0.1214	0.11972	0.11972	0.1199	0.1199	0.1197	0.1197	0.12010722	0.1201	0.1253	0.1050	0.0984
Pert	0.2723	Mode	0.1161 (est)	0.1251	0.1251	0.1229	0.1416	0.11402	0.11398	0.1111	0.1111	0.1108	0.1108	0.10813954	0.1081	0.0987	0.1575	0.0000
Erlang Gamma	0.2903	Median	0.1172	0.1214	0.1214	0.1206	0.1261	0.11783	0.11781	0.1169	0.1169	0.1167	0.1167	0.11582761	0.1158	0.1132	0.1114	0.0984
Lognorm	0.2906	Std. Deviation	0.0282	0.0275	0.0254	0.0258	0.0266	0.02613	0.02622	0.0273	0.0273	0.0273	0.0273	0.02906893	0.0291	0.0492	0.0371	0.0568
Lognorm2	0.3052	Skewness	-0.2693	-2.2594	-0.3125	0.0782	-0.7598	0.4364	0.4381	0.6963	0.6963	0.6771	0.6837	1.0283	1.0283	4.8413	-0.5657	0.0000
FatigueLife	0.3072	Kurtosis	4.5706	23.1613	2.9499	4.1101	3.1031	3.2857	3.2879	3.8742	3.8742	3.7772	3.7790	5.0895	5.0896	222.5830	2.4000	1.8000
Invgauss	0.3075	- Percentiles																
Pearson6	0.3203	5%	0.0787	0.0754	0.0753	0.0764	0.0707	0.08022	0.08009	0.0807	0.0807	0.0806	0.0806	0.08105976	0.0811	0.0801	0.0352	0.00984
Pearson5	0.3203	10%	0.0787	0.0859	0.0859	0.0872	0.0834	0.08770	0.08758	0.0876	0.0876	0.0874	0.0874	0.08738589	0.0874	0.0852	0.0498	0.0197
Frechet	0.3501	15%	0.0787	0.0930	0.0930	0.0942	0.0922	0.09300	0.09290	0.0925	0.0925	0.0924	0.0924	0.09203507	0.0920	0.0892	0.0610	0.0295
Triang	0.3537	20%	0.0787	0.0986	0.0986	0.0996	0.0990	0.09736	0.09728	0.0967	0.0967	0.0965	0.0965	0.09597033	0.0960	0.0927	0.0704	0.0394
Uniform	0.3997	25%	0.1172	0.1033	0.1033	0.1041	0.1048	0.10122	0.10115	0.1004	0.1004	0.1002	0.1002	0.09952856	0.0995	0.0961	0.0788	0.0492
Rayleigh	0.4005	30%	0.1172	0.1075	0.1075	0.1079	0.1098	0.10477	0.10471	0.1038	0.1038	0.1037	0.1036	0.10287631	0.1029	0.0993	0.0863	0.0591
Expon	0.4818	35%	0.1172	0.1113	0.1113	0.1114	0.1144	0.10813	0.10606	0.1071	0.1071	0.1070	0.1070	0.10611443	0.1061	0.1026	0.0932	0.0689
Kumaraswa	0.5421	40%	0.1172	0.1148	0.1145	0.1146	0.1185	0.11139	0.11135	0.1104	0.1104	0.1102	0.1102	0.10931436	0.1093	0.1059	0.0996	0.0788
Levy	0.6047	45%	0.1172	0.1182	0.1182	0.1176	0.1224	0.11460	0.11458	0.1136	0.1136	0.1135	0.1134	0.11253416	0.1125	0.1094	0.1057	0.0886
ChiSq	0.6915	50%	0.1172	0.1214	0.1214	0.1206	0.1261	0.11783	0.11781	0.1169	0.1169	0.1167	0.1167	0.11582761	0.1158	0.1132	0.1114	0.0984
BetoGeneral Loglopistic	N/A N/A		0.1172	0.1214			0.1295	0.12111	0.12111	0.1202	0.1202	0.1201		0.11925075	0.1150	0.1172	0.1168	0.1083
Pareto	N/A	55%			0.1246	0.1234							0.1201					
Pareto2	N/A	60%	0.1280	0.1278	0.1278	0.1263	0.1329	0.12450	0.12452	0.1237	0.1237	0.1236	0.1236	0.12286830	0.1229	0.1216	0.1220	0.1181
1.010100	10/2	65%	0.1280	0.1310	0.1310	0.1293	0.1361	0.12808	0.12811	0.1275	0.1275	0.1274	0.1273	0.12676223	0.1268	0.1266	0.1270	0.1280
		70%	0.1280	0.1343	0.1343	0.1324	0.1393	0.13192	0.13197	0.1315	0.1315	0.1314	0.1314	0.13104512	0.1310	0.1324	0.1318	0.1378
		75%	0.1280	0.1379	0.1379	0.1358	0.1425	0.13616	0.13621	0.1360	0.1360	0.1360	0.1360	0.13588488	0.1359	0.1393	0.1364	0.1477
		80%	0.1280	0.1417	0.1417	0.1396	0.1456	0.14097	0.14105	0.1413	0.1413	0.1412	0.1412	0.14155651	0.1416	0.1479	0.1409	0.1575
		85%	0.1575	0.1460	0.1460	0.1443	0.1489	0.14673	0.14683	0.1476	0.1476	0.1475	0.1475	0.14856902	0.1486	0.1594	0.1452	0.1673
		90%	0.1575	0.1513	0.1513	0.1505	0.1523	0.15418	0.15432	0.1560	0.1560	0.1559	0.1559	0.15805787	0.1581	0.1766	0.1494	0.1772
		95%	0.1575	0.1588	0.1588	0.1606	0.1561	0.16568	0.16587	0.1693	0.1693	0.1690	0.1691	0.17364226	0.1736	0.2094	0.1535	0.1870
		- Information Criteria																
		Akaike (AIC)		N/A	-12.6839	N/A	-12.9345	-12.3829	-12.3831	-12.1843	-12.1843	7.8057	-12.1884	8.0679	-11.9321	9.1336	-12.4302	-12.9185
		Bayesian (BIC)		-16.2461	-19.4650	-16.1077	-19.7156	-19.1640	-19.1642	-18.9654	-18.9654	-17.3659	-18.9695	-17.1038	-18.7132	-16.0381	-19.2114	-14.6424
		Ay. LogL		2.2684	2.2684	2.2545	2.2935	2.2383	2.2383	2.2184	2.2184	2.2194	2.2188	2.1932	2.1932	2.0866	2.2430	1.6252
		- Chi-Squared Test - [*	Values unavailable	without running a	bootstrap]													
		Chi-Sq Statistic		0.2000	0.2000	0.2000	0.2000	0.2000	0.2000	1.8000	1.8000	1.8000	1.8000	1.8000	1.8000	1.8000	1.8000	1.8000
		P-Value*		N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
		Cr. Value @ 0.750*		N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
		Cr. Value @ 0.500*		N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
		Cr. Value @ 0.250*		N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
		Cr. Value @ 0.150*		N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
		Cr. Value @ 0.100*		N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
		Cr. Value @ 0.050*		N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
				N/A	N/A N/A	N/A N/A	N/A N/A	N/A	N/A	N/A N/A	N/A N/A	N/A N/A	N/A	N/A N/A	N/A	N/A N/A	N/A N/A	N/A N/A
		Cr. Value @ 0.025* Cr. Value @ 0.010*		N/A	N/A	N/A N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
				N/A	N/A N/A		N/A N/A	N/A N/A	N/A N/A			N/A N/A	N/A	N/A	N/A N/A	N/A N/A	N/A N/A	N/A
		Cr. Value @ 0.005*		N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A
		Cr. Value @ 0.001*		N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
		- Chi-Sq Test (Binning	Information)															
		Ein #1 : Minimum		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
		Bin #1 : Maximum		0.1214	0.1214	0.1206	0.1261	0.11783	0.11781	0.1169	0.1169	0.1167	0.1167	0.11582761	0.1158	0.1132	0.1114	0.0984
		Bin #1 : Input		3.0000	3.0000	3.0000	3.0000	3.0000	3.0000	1.0000	1,0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
		Bin #1 : Fit		2.5000	2.5000	2.5000	2.5000	2.5000	2.5000	2.5000	2.5000	2.5000	2.5000	2.5000	2.5000	2.5000	2.5000	2,5000
		Bin #2 : Minimum		0.1214	0.1214	0.1206	0.1261	0.11783	0.11781	0.1169	0.1169	0.1167	0.1167	0.11582761	0.1158	0.1132	0.1114	0.0984
		Bin #2 : Maximum		+Infinity	+Infinity	+Infinity	0.1621	+Infinity	+Infinity	-Infinity	+Infinity	+Infinity	+Infinity	+Infinity	+Infinity	+Infinity	0.1575	0.1969

1.1.6 Reactive plant event rate – forced (continuous)

The @risk software found that the Burr12 distribution is the most appropriate fit.

Figure 1-9: Reactive plant event rate (forced) – distribution fit using K-S


nk By		~		Input	Burr12	Weibull	Erlang	Gamma	Lognorm2	Lognorm	FatigueLife	Invgauss	Dagum	Frechet	Pearson6	Pearson5	BetaGeneral	Triang	Rayfeigh
Fit		Value	Distribution Statistic																
Burr		0.2160	Minimum	0.1972	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Erlar		0.2163	Maximum	0.3380	+Infinity	+Infinity	+Infinity	+ Infinity	+Infinity	+ Infinity	+Infinity	= Infinity	+Infinity	+ Infinity	-infinity	+ Infinity	0.3380	0.3380	+Infinity
Gam		0.2589	Mean	0.2778	0.2886	0.2788	0.27776	0.27776	0.2780	0.2780	0.2778	0.2778	0.2870	0.2870	0.27831915	0.2783	0.2839	0.2253	0.2499
	norm2	0.2647	Mode	0.2007 [est]	0.2914	0.2914	0.26850	0.26854	0.2638	0.2638	0.2634	0.2633	0.2387	0.2387	0.25883292	0.2588	0.3380	0.3380	0.1994
Logr		0.2647	Median	0.2958	0.2828	0.2828	0.27468	0.27469	0.2732	0.2732	0.2729	0.2729	0.2658	0.2658	0.27149849	0.2715	0.3098	0.2390	0.2347
Fatig	gueLife	0.2658	Std. Deviation	0.0542	N/A	0.0457	0.05071	0.05061	0.0525	0.0525	0.0524	0.0524	0.0883	0.0882	0.05504469	0.0550	0.0638	0.0797	0.1306
Invg	auss	0.2660	Skewness	-0.7705	N/A	-0.4781	0.3651	0.3644	0.5731	0.5731	0.5621	0.5657	3.4481	3,4478	0.8233	0.8233	+1.5093	-0.5657	0.6311
Dag		0.2687	Kurtosis	3.1643	0.1708	3,2154	3.2000	3.1992	3.5896	3.5896	3.5369	3.5334	44.3136	44.2983	4.3145	4.3145	4.7860	2.4000	3.2451
Frec		0.2687	- Percentiles																
Pear		0.2706	5%	0.1972	0.1965	0.1969	0.19993	0.20007	0.2008	0.2008	0.2007	0.2007	0.1993	0.1993	0.20128975	0.2013	0.1441	0.0756	0.0639
Pear		0.2706	10%	0.1972	0.2176	0.2176	0.21507	0.21519	0.2149	0.2149	0.2147	0.2147	0.2099	0.2099	0.21448604	0.2145	0.1872	0.1069	0.0915
Triar	General	0.3375	15%	0.1972	0.2311	0.2312	0.22572	0.22582	0.2250	0.2250	0.2248	0.2248	0.2181	0.2181	0.22405449	0.2241	0.2163	0.1309	0.1137
Rayl		0.3869	20%	0.1972	0.2417	0.2416	0.23443	0.23452	0.2334	0.2334	0.2331	0.2331	0.2252	0.2252	0.23207238	0.2321	0.2385	0.1512	0.1332
Unif		0.4667	25%	0.2535	0.2502	0.2503	0.24209	0.24216	0.2408	0.2408	0.2405	0.2405	0.2319	0.2319	0.23926065	0.2393	0.2562	0.1690	0.1512
	araswa	0.5039	30%	0.2535	0.2577	0.2578	0.24910	0.24916	0.2476	0.2476	0.2474	0.2473	0.2385	0.2385	0.24597238	0.2460	0.2709	0.1851	0.1684
Expo		0.5083	35%	0.2535	0.2647	0.2647	0.25572	0.25577	0.2542	0.2542	0.2539	0.2539	0.2450	0.2450	0.25241859	0.2524	0.2831	0.2000	0.1851
Chis	iq	0.5610	40%	0.2535	0.2711	0.2710	0.26211	0.26215	0.2605	0.2605	0.2603	0.2602	0.2516	0.2516	0.25874589	0.2587	0.2935	0.2138	0.2015
Levy		0.6270	45%	0.2958	0.2770	0.2770	0.26840	0.26842	0.2668	0.2668	0.2666	0.2666	0.2585	0.2585	0.26507083	0.2651	0.3023	0.2267	0.2180
Logh		N/A	50%	0.2958	0.2828	0.2828	0.27468	0.27469	0.2732	0.2732	0.2729	0.2729	0.2658	0.2658	0.27149849	0.2715	0.3098	0.2390	0.2347
Pare		N/A	55%	0.2958	0.2884	0.2884	0.28106	0.28106	0.2797	0.2797	0.2795	0.2794	0.2737	0.2736	0.27813550	0.2781	0.3161	0.2507	0.2520
Pare		N/A	60%	0.3043	0.2939	0.2940	0.28764	0.28763	0.2864	0.2864	0.2862	0.2862	0.2823	0.2822	0.28510253	0.2851	0.3215	0.2618	0.2699
- Pert		N/A	65%	0.3043	0.2996	0.2996	0.29455	0.29453	0.2936	0.2936	0.2934	0.2934	0.2919	0.2919	0.29254956	0.2925	0.3259	0.2725	0.2889
			70%	0.3043	0.3053	0.3054	0.30196	0.30191	0.3013	0.3013	0.3012	0.3012	0.3029	0.3029	0.30067989	0.3007	0.3295	0.2828	0.3094
			75%	0.3043	0.3114	0.3114	0.31008	0.31002	0.3099	0.3099	0.3098	0.3098	0.3160	0.3160	0.30979362	0.3098	0.3324	0.2927	0.3320
			80%	0.3043	0.3179	0.3179	0.31929	0.31921	0.3198	0.3198	0.3196	0.3196	0.3322	0.3322	0.32037807	0.3204	0.3347	0.3023	0.3577
			85%	0.3380	0.3253	0.3253	0.33026	0.33016	0.3316	0.3316	0.3315	0.3315	0.3536	0.3535	0.33332813	0.3333	0.3363	0.3116	0.3884
			90%	0.3380	0.3342	0.3342	0.34441	0.34427	0.3472	0.3472	0.3470	0.3470	0.3850	0.3850	0.35062318	0.3506	0.3373	0.3207	0.4278
			95%	0.3380	0.3466	0.3466	0.36610	0.36591	0.3716	0.3716	0.3712	0.3713	0.4436	0.4435	0.37849934	0.3785	0.3379	0.3294	0.4880
			- Information Criteria																
			Akaike (AJC)		N/A	-6.5514	-5.7580	-5.7581	-5.5464	-5.5464	14.4421	-5.5539	N/A	15.8144	14.6901	-5.3099		-5.6488	-5.9415
			Bayesian (BIC)		-10.1136	-13.3325	-12.5392	-12.5392	-12.3276	-12.3276	-10.7296	-12.3350	-7.7478	-9.3572	-10.4816	-12.0910		-12.4299	-7.6654
			Av. LogL		1.6551	1.6551	1.5758	1.5758	1.5546	1.5546	1.5558	1.5554	1.4186	1.4186	1.5310	1.5310		1.5649	0.9275
			- Chi-Squared Test - I*	Values unavailable	without running a	bootstrapl													
			Chi-Sq Statistic		0.2000	0.2000	0.2000	0.2000	0.2000	0.2000	0.2000	0.2000	0.2000	0.2000	0.2000	0.2000	1.8000	1.8000	1.8000
			P-Value*		N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
			Cr. Value @ 0.750*		N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
			Cr. Value @ 0.500*		N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
			Cr. Value @ 0.250*		N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
			Cr. Value @ 0.150*		N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
			Cr. Value @ 0.100*		N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
			Cr. Value @ 0.050*		N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
			Cr. Value @ 0.025*		N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
			Cr. Value @ 0.023*		N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
			Cr. Value @ 0.005*		N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A N/A
			Cr. Value @ 0.005*		N/A N/A	N/A N/A	N/A N/A	N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A	N/A N/A	N/A N/A	N/A	N/A	N/A N/A
					N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
			- Chi-Sq Test (Binning	information)			0.0000					0.0000		0.0000	0.0000				
			Bin #1 : Minimum		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
			Bin #1 : Maximum			0.2828	0.27468	0.27469						0.2658		0.2715	0.3098	0.2390	
			Bin #1 : Input		2.0000	2.0000	2.0000	2.0000	2.0000	2.0000	2.0000	2.0000	2.0000	2.0000	2.0000	2.0000	4.0000	1.0000	1.0000
			Bin #1 : Fit		2.5000	2.5000	2.5000	2.5000	2.5000	2.5000	2.5000	2.5000	2.5000	2.5000	2.5000	2.5000	2.5000	2.5000	2.5000
			Bin #2 : Minimum		0.2828	0.2828	0.27468	0.27469	0.2732	0.2732	0.2729	0.2729	0.2658	0.2658	0.27149849	0.2715	0.3098	0.2390	0.2347
			Ein #2 : Maximum		+Infinity	+Infinity	+Infinity	+ Infinity	+Infinity	+Infinity	+Infinity	+Infinity	+Infinity	+Infinity	+Infinity	+Infinity	0.3380	0.3380	+Infinity
			Contra - E - response dans																

1.2 Service parameter 2 – loss of supply event frequency

1.2.1 Number of events > 0.05 system minutes (discrete)

Whilst @risk found that the Geometric distribution is the best fit according to AIC and IntUniform according to BIC, the Poisson distribution has been adopted, consistent with both the loss of supply event frequency (>0.30 system minutes) parameter and the Draft Decision.

Figure 1-11: Number of events >0.05 system minutes – Poisson distribution

k By AIC	\sim		Input	Geomet	Poisson	IntUniform	NegBin	Hyperge
Fit	Value	95% Lower Limit*						N
Geomet	19.6340	95% Upper Limit*						N
Poisson	19.7898	Conf. Interval Width*						N
IntUniform	23.8629	- Distribution Statistics						
NegBin	26.1033	Minimum	0.0000	0.0000	0.0000	0.0000	0.0000	0.00
Hypergeo	46.5133	Maximum	3.0000	+Infinity	+Infinity	3.0000	+Infinity	44.00
Binomial	N/A	Mean	1.4000	1.4000	1.4000	1.5000	1.4000	1.38
		Mode	0.0000	0.0000	1.0000	0.0000	0.0000	1.00
		Median	1.0000	1.0000	1.0000	1.0000	1.0000	1.00
		Std. Deviation	1.5166	1.8330	1.1832	1.1180	1.5427	1.15
		Skewness	0.3154	2.0731	0.8452	0.0000	1.5557	0.80
			-0.0813	9,2976				3.60
		Kurtosis	-0.0015	9.2976	3.7143	1.6400	6.4202	5.00
		- Percentiles						
		5%	0.0000	0.0000	0.0000	0.0000	0.0000	0.00
		10%	0.0000	0.0000	0.0000	0.0000	0.0000	0.00
		15%	0.0000	0.0000	0.0000	0.0000	0.0000	0.00
		20%	0.0000	0.0000	0.0000	0.0000	0.0000	0.00
		25%	0.0000	0.0000	1.0000	0.0000	0.0000	1.00
		30%	0.0000	0.0000	1.0000	1.0000	0.0000	1.00
		35%	0.0000	0.0000	1.0000	1.0000	1.0000	1.00
		40%	0.0000	0.0000	1.0000	1.0000	1.0000	1.00
		45%	1.0000	1.0000	1.0000	1.0000	1.0000	1.00
		50%	1.0000	1.0000	1.0000	1.0000	1.0000	1.00
		55%	1.0000	1.0000	1.0000	2.0000	1.0000	1.00
		60%	1.0000	1.0000	2.0000	2.0000	1.0000	2.00
		65%	3.0000	1.0000	2.0000	2.0000	2.0000	2.00
		70%	3.0000	2.0000	2.0000	2.0000	2.0000	2.00
		75%	3.0000	2.0000	2.0000	2.0000	2.0000	2.00
		80%	3.0000	2.0000	2.0000	3.0000	2.0000	2.00
		85%	3.0000	3.0000	3.0000	3.0000	3.0000	3.00
		90%	3.0000	4,0000	3.0000	3.0000	3.0000	3.00
		95%	3.0000	5.0000	4.0000	3.0000	4.0000	3.0
		- Information Criteria	5.0000	510000		510000		510
		Akaike (AIC)		19.6340	19.7898	23.8629	26.1033	46.51
		Bayesian (BIC)		17.9101	18.0659	17.0818	19.3222	21.3
		Av. LogL		-1.6301	-1.6456	-1.3863	-1.6103	-1.6
						-1.3003	-1.0105	-1.0
		- Chi-Squared Test - [* Va	liues unavailable			0.0000	0.0000	
		Chi-Sq Statistic		0.0000	0.0000	0.0000	0.0000	0.0
				N/A	N/A	N/A	N/A	
		Cr. Value @ 0.750*		N/A	N/A	N/A	N/A	N.
		Cr. Value @ 0.500*		N/A	N/A	N/A	N/A	P.
		Cr. Value @ 0.250*		N/A	N/A	N/A	N/A	P.
		Cr. Value @ 0.150*		N/A	N/A	N/A	N/A	
		Cr. Value @ 0.100*		N/A	N/A	N/A	N/A	
		Cr. Value @ 0.050*		N/A	N/A	N/A	N/A	1
		Cr. Value @ 0.025*		N/A	N/A	N/A	N/A	P.
		Cr. Value @ 0.010*		N/A	N/A	N/A	N/A	1
		Cr. Value @ 0.005*		N/A	N/A	N/A	N/A	N
		Cr. Value @ 0.001*		N/A	N/A	N/A	N/A	N
		- Chi-Sq Test (Binning Inf	formation)					
		Bin #1 : Minimum		0.0000	0.0000	0.0000	0.0000	0.00
		Bin #1 : Maximum		+Infinity	+Infinity	3.0000	+Infinity	44.00
		Bin #1 : Input		5.0000	5.0000	5.0000	5.0000	5.00
					5.0000	5.0000		

Figure 1-12: Number of events >0.05 system minutes – AIC statistics table

Figure 1-13: Number of events >0.05 s	system minutes – BIC statistics table
i igule i-is. Nullibel of evenus 20.05 s	

nk By BIC	\sim		Input	IntUniform	Geomet	Poisson	NegBin	Hyperge
Fit	Value	95% Lower Limit*						N/.
IntUniform	17.0818	95% Upper Limit*						N/
Geomet	17.9101	Conf. Interval Width*						N/.
Poisson	18.0659	- Distribution Statistics						
NegBin	19.3222	Minimum	0.0000	0.0000	0.0000	0.0000	0.0000	0.000
Hypergeo	21.3416	Maximum	3,0000	3.0000	+Infinity	+Infinity	+Infinity	44.000
Binomial	N/A	Mean	1,4000	1.5000	1,4000	1,4000	1.4000	1.380
		Mode	0.0000	0.0000	0.0000	1.0000	0.0000	1.000
		Median	1.0000	1.0000	1.0000	1.0000	1.0000	1.000
		Std. Deviation	1.5166	1.1180	1.8330	1.1832	1.5427	1.155
		Skewness	0.3154	0.0000	2.0731	0.8452	1.5557	0.808
		Kurtosis	-0.0813	1.6400	9.2976	3.7143	6.4202	3.607
			-0.0015	1.0400	9.2976	5.7 145	6.4202	5.001
		Percentiles						
		5%	0.0000	0.0000	0.0000	0.0000	0.0000	0.000
		10%	0.0000	0.0000	0.0000	0.0000	0.0000	0.000
		15%	0.0000	0.0000	0.0000	0.0000	0.0000	0.000
		20%	0.0000	0.0000	0.0000	0.0000	0.0000	0.00
		25%	0.0000	0.0000	0.0000	1.0000	0.0000	1.00
		30%	0.0000	1.0000	0.0000	1.0000	0.0000	1.00
		35%	0.0000	1.0000	0.0000	1.0000	1.0000	1.000
		40%	0.0000	1.0000	0.0000	1.0000	1.0000	1.00
		45%	1.0000	1.0000	1.0000	1.0000	1.0000	1.000
		50%	1.0000	1.0000	1.0000	1.0000	1.0000	1.000
		55%	1.0000	2.0000	1.0000	1.0000	1.0000	1.000
		60%	1.0000	2.0000	1.0000	2.0000	1.0000	2.00
		65%	3.0000	2.0000	1.0000	2.0000	2.0000	2.000
		70%	3.0000	2,0000	2.0000	2.0000	2.0000	2.000
		75%	3.0000	2.0000	2.0000	2.0000	2.0000	2.00
		80%	3.0000	3.0000	2,0000	2.0000	2.0000	2.000
		85%	3.0000	3.0000	3.0000	3.0000	3.0000	3.000
		90%	3.0000	3.0000	4.0000	3.0000	3.0000	3.000
		95%	3.0000	3.0000	5.0000	4.0000	4.0000	3.000
			5.0000	5.0000	5.0000	4.0000	4.0000	5.000
		- Information Criteria		22.0520	10 53 10	10 7000	26 4 2 2 2	10.04
		Akaike (AIC)		23.8629	19.6340	19.7898	26.1033	46.513
		Bayesian (BIC)		17.0818	17.9101	18.0659	19.3222	21.341
		Av. LogL		-1.3863	-1.6301	-1.6456	-1.6103	-1.651
		Chi-Squared Test - [* Va	lues unavailabl					
		Chi-Sq Statistic		0.0000	0.0000	0.0000	0.0000	0.000
		P-Value*		N/A	N/A	N/A	N/A	N/
		Cr. Value @ 0.750*		N/A	N/A	N/A	N/A	N/
		Cr. Value @ 0.500*		N/A	N/A	N/A	N/A	N/
		Cr. Value @ 0.250*		N/A	N/A	N/A	N/A	N/
		Cr. Value @ 0.150*		N/A	N/A	N/A	N/A	N/
		Cr. Value @ 0.100*		N/A	N/A	N/A	N/A	N/
		Cr. Value @ 0.050*		N/A	N/A	N/A	N/A	N/
		Cr. Value @ 0.025*		N/A	N/A	N/A	N/A	N
		Cr. Value @ 0.010*		N/A	N/A	N/A	N/A	N,
		Cr. Value @ 0.005*		N/A	N/A	N/A	N/A	N
		Cr. Value @ 0.001*		N/A	N/A	N/A	N/A	N/
		- Chi-Sq Test (Binning Inf	ormation			1975		
		Bin #1 : Minimum	ormationy	0.0000	0.0000	0.0000	0.0000	0.000
		Bin #1: Maximum		3.0000	+Infinity	+Infinity	+Infinity	44.000
		Bin #1: Input		5.0000	+infinity 5.0000	+infinity 5.0000	+ Infinity 5.0000	
								5.000
		Bin #1 : Fit		5.0000	5.0000	5.0000	5.0000	5.000

1.2.2 Number of events > 0.30 system minutes (discrete)

The data does not lend itself easily to statistical analysis, as it is comprised of either zero or one events. To retain consistency with the 0.05 minutes parameter and the Draft Decision, the Poisson distribution has been adopted and is in accordance with AIC.

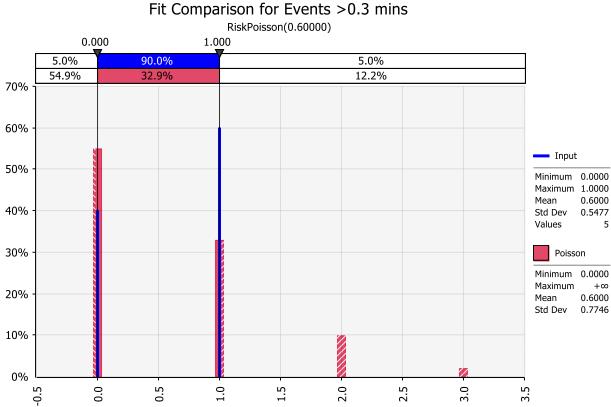
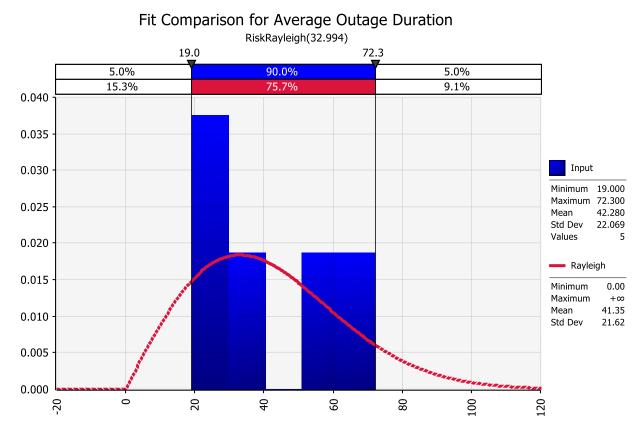


Figure 1-14: Number of events >0.30 system minutes – Poisson distribution

Ву	AIC	~		Input	Poisson	Geomet	Binomial	IntUniform	Hypergeo
Fit		Value	95% Lower Limit*						N//
oisso		12.3983	95% Upper Limit*						N//
eom		13.9183	Conf. Interval Width*						N//
inom		16.7301	Distribution Statistics						
	iform	16.9315 36.7301	Minimum	0.0000	0.0000	0.0000	0.0000	0.0000	0.000
lyper IegBii		56.7501 N/A	Maximum	1.0000	+Infinity	+Infinity	1.0000	1.0000	1.000
-cybi		100	Mean	0.6000	0.6000	0.6000	0.6000	0.5000	0.600
			Mode	1.0000	0.0000	0.0000	1.0000	0.0000	1.000
			Median	1.0000	0.0000	0.0000	1.0000	0.0000	1.000
			Std. Deviation	0.5477	0.7746	0.9798	0.4899	0.5000	0.489
			Skewness	-0.6086	1.2910	2.2454	-0.4082	0.0000	-0.408
			Kurtosis	-0.3333	4.6667	10.0417	1.1667	1.0000	1.166
			- Percentiles						
			5%	0.0000	0.0000	0.0000	0.0000	0.0000	0.000
			10%	0.0000	0.0000	0.0000	0.0000	0.0000	0.000
			15%	0.0000	0.0000	0.0000	0.0000	0.0000	0.000
			20%	0.0000	0.0000	0.0000	0.0000	0.0000	0.000
			25%	0.0000	0.0000	0.0000	0.0000	0.0000	0.000
			30%	0.0000	0.0000	0.0000	0.0000	0.0000	0.000
			35%	0.0000	0.0000	0.0000	0.0000	0.0000	0.000
			40%	0.0000	0.0000	0.0000	0.0000	0.0000	0.000
			45%	1.0000	0.0000	0.0000	1.0000	0.0000	1.000
			50%	1.0000	0.0000	0.0000	1.0000	0.0000	1.000
			55%	1.0000	1.0000	0.0000	1.0000	1.0000	1.000
			60%	1.0000	1.0000	0.0000	1.0000	1.0000	1.000
			65%	1.0000	1.0000	1.0000	1.0000	1.0000	1.000
			70%	1.0000	1.0000	1.0000	1.0000	1.0000	1.000
			75%	1.0000	1.0000	1.0000	1.0000	1.0000	1.000
			80%	1.0000	1.0000	1.0000	1.0000	1.0000	1.000
			85%	1.0000	1.0000	1.0000	1.0000	1.0000	1.000
			90%	1.0000	2.0000	2.0000	1.0000	1.0000	1.000
			95%	1.0000	2.0000	3.0000	1.0000	1.0000	1.000
			- Information Criteria						
			Akaike (AIC)		12.3983	13.9183	16.7301	16.9315	36.730
			Bayesian (BIC)		10.6744	12.1944	9.9490	10.1503	11.558
			Av. LogL		-0.9065	-1.0585	-0.6730	-0.6931	-0.6730
			- Chi-Squared Test - [* V	alues unavailable	without running a	bootstrap]			
			Chi-Sq Statistic		0.0000	0.0000	0.0000	0.0000	0.000
			P-Value*		N/A	N/A	N/A	N/A	N//
			Cr. Value @ 0.750*		N/A	N/A	N/A	N/A	N//
			Cr. Value @ 0.500*		N/A	N/A	N/A	N/A	N//
			Cr. Value @ 0.250*		N/A	N/A	N/A	N/A	N//
			Cr. Value @ 0.150*		N/A	N/A	N/A	N/A	N//
			Cr. Value @ 0.100*		N/A	N/A	N/A	N/A	N//
			Cr. Value @ 0.050*		N/A	N/A	N/A	N/A	N//
			Cr. Value @ 0.025*		N/A	N/A	N/A	N/A	N//
			Cr. Value @ 0.010*		N/A	N/A	N/A	N/A	N//
			Cr. Value @ 0.005*		N/A	N/A	N/A	N/A	N/#
			Cr. Value @ 0.001*		N/A	N/A	N/A	N/A	N//
			- Chi-Sq Test (Binning In	formation)					
			Bin #1 : Minimum		0.0000	0.0000	0.0000	0.0000	0.000
			Bin #1 : Maximum		+Infinity	+Infinity	1.0000	1.0000	1.000
			Bin #1 : Input		5.0000	5.0000	5.0000	5.0000	5.000
			Bin #1 : Fit		5.0000	5.0000	5.0000	5.0000	5.000

Figure 1-15: Number of events >0.30 system minutes – AIC distribution

Figure 1-16: Number of events >0.30 s	vetom minutos – BIC distribution
Figure 1-10. Number of events >0.30 S	y_{Stem} minutes – Dic distribution


ank By BIC	\sim		Input	Binomial	IntUniform	Poisson	Hypergeo	Geome
Fit	Value	95% Lower Limit*					N/A	
Binomial	9.9490	95% Upper Limit*					N/A	
IntUniform	10.1503	Conf. Interval Width*					N/A	
Poisson	10.6744	- Distribution Statistics						
Hypergeo	11.5584	Minimum	0.0000	0.0000	0.0000	0.0000	0.0000	0.000
Geomet	12.1944	Maximum	1.0000	1.0000	1.0000	+Infinity	1.0000	+Infinit
NegBin	N/A	Mean	0.6000	0.6000	0.5000	0.6000	0.6000	0.600
		Mode	1.0000	1.0000	0.0000	0.0000	1.0000	0.000
		Median	1.0000	1.0000	0.0000	0.0000	1.0000	0.000
		Std. Deviation	0.5477	0.4899	0.5000	0.7746	0.4899	0.979
		Skewness	-0.6086	-0.4082	0.0000	1.2910	-0.4082	2.245
		Kurtosis	-0.3333	1.1667	1.0000	4.6667	1.1667	10.041
		- Percentiles						
		5%	0.0000	0.0000	0.0000	0.0000	0.0000	0.000
		10%	0.0000	0.0000	0.0000	0.0000	0.0000	0.000
		15%	0.0000	0.0000	0.0000	0.0000	0.0000	0.000
		20%	0.0000	0.0000	0.0000	0.0000	0.0000	0.000
		25%	0.0000	0.0000	0.0000	0.0000	0.0000	0.000
		30%	0.0000	0.0000	0.0000	0.0000	0.0000	0.000
		35%	0.0000	0.0000	0.0000	0.0000	0.0000	0.000
		40%						0.000
			0.0000	0.0000	0.0000	0.0000	0.0000	
		45%	1.0000	1.0000	0.0000	0.0000	1.0000	0.000
		50%	1.0000	1.0000	0.0000	0.0000	1.0000	0.000
		55%	1.0000	1.0000	1.0000	1.0000	1.0000	0.000
		60%	1.0000	1.0000	1.0000	1.0000	1.0000	0.000
		65%	1.0000	1.0000	1.0000	1.0000	1.0000	1.000
		70%	1.0000	1.0000	1.0000	1.0000	1.0000	1.000
		75%	1.0000	1.0000	1.0000	1.0000	1.0000	1.000
		80%	1.0000	1.0000	1.0000	1.0000	1.0000	1.000
		85%	1.0000	1.0000	1.0000	1.0000	1.0000	1.000
		90%	1.0000	1.0000	1.0000	2.0000	1.0000	2.000
		95%	1.0000	1.0000	1.0000	2.0000	1.0000	3.000
		Information Criteria						
		Akaike (AIC)		16.7301	16.9315	12.3983	36.7301	13.918
		Bayesian (BIC)		9.9490	10.1503	10.6744	11.5584	12.194
		Av. LogL		-0.6730	-0.6931	-0.9065	-0.6730	-1.058
		- Chi-Squared Test - (* Va	lues unavailable	without running a	bootstrap]			
		Chi-Sq Statistic		0.0000	0.0000	0.0000	0.0000	0.000
		P-Value*		N/A	N/A	N/A	N/A	N/
		Cr. Value @ 0.750*		N/A	N/A	N/A	N/A	N/
		Cr. Value @ 0.500*		N/A	N/A	N/A	N/A	N/
		Cr. Value @ 0.250*		N/A	N/A	N/A	N/A	N
		Cr. Value @ 0.150*		N/A	N/A	N/A	N/A	N
		Cr. Value @ 0.100*		N/A	N/A	N/A	N/A	N
		Cr. Value @ 0.050*		N/A	N/A	N/A	N/A	N
		Cr. Value @ 0.025*		N/A	N/A	N/A	N/A	N
		Cr. Value @ 0.010*		N/A	N/A	N/A	N/A	N
		Cr. Value @ 0.005*		N/A	N/A	N/A	N/A	N
		Cr. Value @ 0.003		N/A	N/A	N/A	N/A	N
		- Chi-Sa Test (Binning Inf	(and the set	1974	13/25	17/5	1975	DQ.
			ormation)	0.0000	0.0000	0.0000	0.0000	0.000
		Bin #1 : Minimum		0.0000	0.0000	0.0000	0.0000	0.000
		Bin #1 : Maximum		1.0000	1.0000	+Infinity	1.0000	+Infini
		Bin #1 : Input		5.0000	5.0000	5.0000	5.0000	5.000

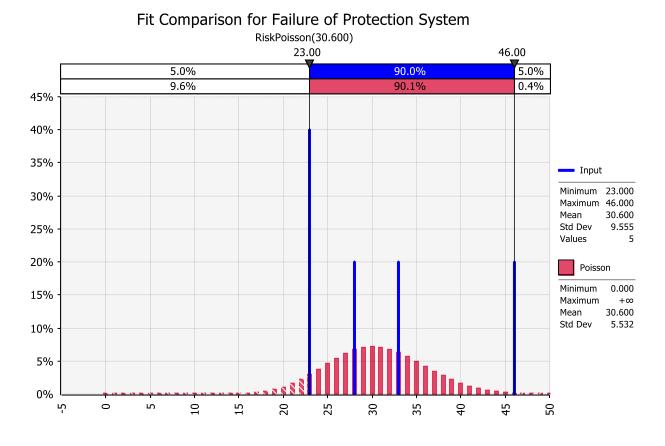
1.3 Service parameter 3 – average outage duration

1.3.1 Average outage duration (continuous)

The @risk software found the Rayleigh distribution is the most appropriate fit.

Figure 1-17: Average outage duration – distribution fit using K-S

Figure 1-18: Average outage duration – statistics table using K-S


nk By K-S	~		Input	Rayleigh	Pearson5	Pearson6	Erlang	Invgauss	FatigueLife	Loglogistic	Lognorm	Lognorm2	Frechet	Dagum	Uniform	Gamma	Weibull	Burr12	
Fit	Value	- Distribution Statist																	
Rayleigh	0.1607	Minimum	19.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
Pearson5	0.1950	Maximum	72.3000	+Infinity	+Infinity	+Infinity	+Infinity	+infinity	+Infinity	+ Infinity	+Infinity	+ Infinity	+Infinity	+Infinity	90.3750	+Infinity	+Infinity	+Infinity	
Pearson6	0.1950	Mean	42.2800	41.3522	43.4206	43.420588	42.2800	42.2800	42.2742	44.5713	42.5001	42.5001	46.9572	46.9569	45.1875	42.2800	42.5060	42.5140	
Erlang	0.1957 0.2017	Mode	20.3325 [est]	32.9943	26.9543	26.954394	31.7100	28.4467	28.6607	31.1079	29.3336	29.3336	24.8461	24.8461	0.0000	32.6332	37.7608	37.7608	
FatigueLife	0.2017	Median	39.8000	38.8478	36.0287	36.028802	38.8137	37.3093	37.4953	37.8951	37.5591	37.5591	34,4733	34.4732	45.1875	39.1115	41.0034	41.0034	
Loglogistic	0.2040	Std. Deviation	22.0694	21.6157	28.7948	28.794447	21.1400	22.0163	21.7387	31.6856	22.5055	22.5055	72.5056	72.5027	26.0890	20.1957	19.3317	19.2801	
Lognorm	0.2049	Skewness	0.4370	0.6311	4.7350	4.7348	1.0000	1.5622	1.4678	14.8721	1.7371	1.7371	+Infinity	N/A	0.0000	0.9553	0.4367	0.4609	
Lognorm2	0.2049	Kurtosis	1.5300	3.2451	181.3391	181.2751	4.5000	7.0673	6.5573	+Infinity	8.8046	8.8046	+Infinity	N/A	1.8000	4.3690	2.9432	2.9341	
Frechet	0.2053	= Percentites																	
Dagum	0.2053	5%	19.0000	10.5678	17.4596	17.459533	14.4420	16.8209	16.7087	15.2581	16.5790	16.5790	17.9578	17.9578	4.5188	15.3580	13.4480	13.4467	
Uniform	0.2102	10%	19.0000	15.1458	20.1804	20.180435	18.4422	19.9052	19.8452	19.2204	19.8610	19.8610	20.1918	20.1918	9.0375	19.3289	18.3025	18.3032	
Gamma	0.2108	15%	19.0000	18.8107	22.3515	22.351545	21.5533	22.3647	22.3478	22.1736	22.4351	22.4351	22.0118	22.0118	13.5563	22.3902	22.0346	22.0343	
Weibull	0.2120	20%	19.0000	22.0417	24.3088	24.308825	24.2770	24.5710	24.5921	24.6929	24.7168	24.7168	23.6852	23.6852	18.0750	25.0551	25.2380	25.2387	
Burr12	0.2121	25%	24.5000	25.0271	26.1769	26.176955	26.7983	26.6614	26.7169	26.9881	26.8583	26.8583	25.3138	25.3138	22.5938	27.5113	28.1381	28.1388	
Pert	0.2176	30%	24.5000	27.8670	28.0230	28.023075	29.2124	28.7084	28.7955	29.1671	28.9392	28.9392	26.9552	26.9552	27.1125	29.8547	30.8510	30.8512	
Triang BetaGeneral	0.2970	35%	24.5000	30.6255	29.8932	29.893203	31.5794	30.7599	30.8759	31.2983	31.0111	31.0111	28.6519	28.6519	31.6313	32.1455	33.4482	33.4488	
Expon	0.3620	40%	24,5000	33,3495	31.8255	31,825546	33.9437	32.8537	32,9961	33,4332	33,1140	33,1140	30.4423	30.4423	36,1500	34,4276	35,9802	35.9800	
ChiSq	0.3662	45%	39.8000	36.0782	33.8571	33.857187	36.3430	35.0248	35,1906	35.6170	35.2844	35.2844	32.3669	32.3669	40.6688	36.7379	38.4869	38.4867	
Kumaraswa	0.4827	50%	39,8000	38.8478	36.0287	36.028802	38.8137	37,3093	37,4953	37.8951	37,5591	37.5591	34.4733	34.4732	45.1875	39.1115	41.0034	41.0034	
Levy	0.5024	55%	39.8000	41,6959	18,3893	38,389397	41.3948	39,7487	39,9508	40.3189	39.9805	39,9805	36.8219	36.8218	49,7063	41.5861	43.5645	43.5647	
Pareto	N/A	60%	55.8000	44.6653	41.0025	41.002539	44.1325	42.3949	42.6079	42.9525	42.6008	42.6008	39.4950	39.4948	54.2250	44.2054	46.2080	46.2083	
Pareto2	N/A	65%	55.8000	47.8092	43.9561	43,956142	47.0860	45.3168	45.5337	45.8823	45,4897	45.4897	42,6108	42,6106	58,7438	47.0256	48,9796	48,9797	
		70%	55,8000	51,1990	47.3796	47.379700	50.3368	48.6125	48.8234	49.2349	43,7465	48,7465	46.3499	46.3496	63.2625	50.1237	51.9388	51,9386	
		75%	55.8000	54,9391	51,4779	51,477956	54.0066	52,4318	52.6218	53,2101	52,5232	52.5232	51.0088	51.0086	67,7813	53.6144	55.1712	55.1712	
		80%	55,8000	59.1958	56.6048	56.604832	58,2940	57.0231	57,1686	58,1561	\$7.0740	57.0740	57.1219	57.1216	72.3000	57,6841	58,8120	58.8122	
		85%	72.3000	64.2689	63.4535	63.453484	63.5631	62.8508	62.9099	64.7636	62.8785	62.8785	65.7880	65.7875	76.8188	62.6749	63.1025	63.1024	
		90%	72.3000	70.8046	73.6782	73.678104	70.6159	70.9579	70.8431	74.7146	71.0277	71.0277	79.8016	79.8009	81.3375	69.3391	68.5590	68.5592	
		95%	72.3000	80.7616	93.0901	93.089707	81.9561	84.6817	84.1412	94.1165	85.0888	85.0888	109.9764	109.9753	85.8563	80.0220	76.7360	76.7361	
		- Information Criteria		00.7010	93.0901	95.069707	01.9301	04.0017	04.1412	34.1103	63.0606	63.0000	103.3/64	109.9755	00-0003	60.0220	10.1300	/0./301	
				47.0009	53.5745	73.5745	51,4609	53.3312	22.2444	54.0288	53.4604	53,4604	78.7641	11.00		53,4391	\$3,4911	N/A	
		Akaike (AIC)							73.3100					N/A	48.3730				
		Bayesian (BIC)		45.2770	46.7934	48.4028	46.6798	46.5501	48.1383	47.2477	46.6793	46.6793	48.5924	50.2018	46.6491	46.6580	46.7100	49.9289	
		Av. LogL				-4.3575	-4.3401	-4.3331	-4,3310	-4.4029	-4.3400	-4.3400	-4.3/04	-4.3/04	-4.5040	-4-3439	-4.3491	-4.3491	
		- Chi-Squared Test -	* Values unavailable																
		Chi-Sq Statistic		0.2000	0.2000	0.2000	0.2000	0.2000	0.2000	0.2000	0.2000	0.2000	0.2000	0.2000	0.2000	0.2000	0.2000	0.2000	
		P-Value*		N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	
		Cr. Value @ 0.750*		N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	
		Cr. Value @ 0.500*		N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A.	N/A	N/A	N/A	
		Cr. Value @ 0.250*		N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A.	N/A	N/A	N/A	
		Cr. Value @ 0.150*		N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	
		Cr. Value @ 0.100*		N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	
		Cr. Value @ 0.050*		N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	
		Cr. Value @ 0.025*		N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	
		Cr. Value @ 0.010*		N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	
		Cr. Value @ 0.005*		N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	
		Cr. Value @ 0.001*		N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	
		Chi-Sq Test (Binnin)	Information)																
		Sin #1 : Minimum		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
		Bin #1 : Maximum		38.8478	36.0287	36.028802	38.8137	37.3093	37,4953	37.8951	37.5591	37.5591	34.4733	34.4732	45.1875	39.1115	41.0034	41.0034	
		Bin #1 : Input		2.0000	2.0000	2.0000	2.0000	2.0000	2.0000	2.0000	2.0000	2.0000	2.0000	2.0000	3.0000	2.0000	3.0000	3.0000	
		Bin #1 : Fit		2.5000	2.5000	2.5000	2.5000	2.5000	2.5000	2.5000	2.5000	2.5000	2.5000	2.5000	2.5000	2.5000	2.5000	2.5000	
		Bin #2 : Minimum		38.8478	36.0287	36.028802	38,8137	37.3093	37,4953	37.8951	37.5591	37.5591	34.4733	34.4732	45.1875	39.1115	41.0034	41.0034	
		Bin #2 : Maximum		+Infinity	+Infinity	+Infinity	+ infinity	+infinity	+Infinity	+Infinity	+Infinity	+Infinity	+Infinity	+Infinity	90.3750	+ Infinity	+Infinity	+ Infinity	

1.4 Service parameter 4 – proper operation of equipment

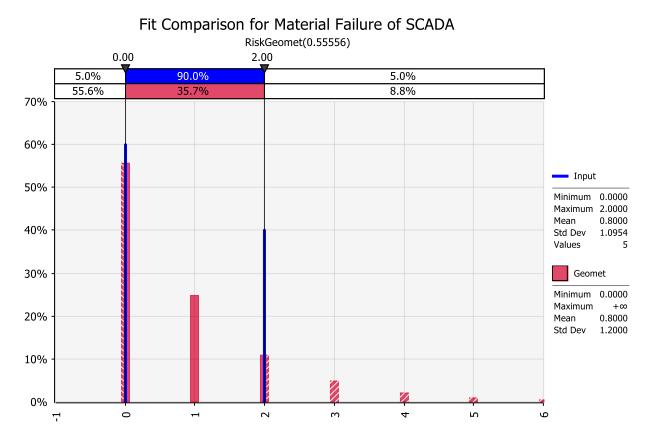
1.4.1 Failure of protection system (discrete)

Whilst @risk found that the IntUniform distribution is the best fit according to BIC, the Poisson distribution has been adopted, consistent with distribution used for the other sub-parameters with discrete distributions (loss of supply event frequency).

Figure 1-19: Failure of protection system – Poisson distribution

an	nk By AIC	\sim		Input	Poisson	IntUniform	NegBin	Geomet	Hyperge
	Fit	Value	95% Lower Limit*						N//
7	Poisson	40.7276	95% Upper Limit*						N//
	IntUniform	41.7805	Conf. Interval Width*						N//
	NegBin	45.0301	Distribution Statistics						
	Geomet	47.7050	Minimum	23.0000	0.0000	23.0000	0.0000	0.0000	0.000
1	Hypergeo	67.8519	Maximum	46.0000	+Infinity	46.0000	+Infinity	+Infinity	938.000
	Binomial	N/A	Mean	30.6000	30.6000	34.5000	30.6000	30.6000	30.572
			Mode	23.0000	30.0000	23.0000	29.0000	0.0000	30.000
			Median	28.0000	30.0000	34.0000	30.0000	21.0000	30.000
			Std. Deviation	9.5551	5.5317	6.9222	8.2495	31.0960	5.359
			Skewness	1.3233	0.1808	0.0000	0.4180	2.0003	0.164
			Kurtosis	4.4468	3.0327	1.7958	3.2547	9.0010	3.023
			- Percentiles						
			5%	23.0000	22.0000	24.0000	18.0000	1.0000	22.000
			10%	23.0000	24.0000	25.0000	20.0000	3.0000	24.000
			15%	23.0000	25.0000	26.0000	22.0000	5.0000	25.000
			20%	23.0000	26.0000	27.0000	24.0000	6.0000	26.000
			25%	23.0000	27.0000	28.0000	25.0000	8.0000	27.000
			30%	23.0000	28.0000	30.0000	26.0000	11.0000	28.000
			35%	23.0000	28.0000	31.0000	27.0000	13.0000	28.000
			40%	23.0000	29.0000	32.0000	28.0000	15.0000	29.000
			45%	28.0000	30.0000	33.0000	29.0000	18.0000	30.000
			50%	28.0000	30.0000	34.0000	30.0000	21.0000	30.000
			55%	28.0000	31.0000	36.0000	31.0000	24.0000	31.000
			60%	28.0000	32.0000	37.0000	32.0000	28.0000	32.000
			65%	33.0000	33.0000	38.0000	33.0000	32.0000	33.000
			70%	33.0000	33.0000	39.0000	34.0000	37.0000	33.000
			75%	33.0000	34.0000	40.0000	36.0000	43.0000	34.000
			80%	33.0000	35.0000	42.0000	37.0000	50.0000	35.000
			85%	46.0000	36.0000	43.0000	39.0000	58.0000	36.000
			90%	46.0000	38.0000	44.0000	41.0000	71.0000	38.000
			95%	46.0000	40.0000	45.0000	45.0000	93.0000	40.000
			 Information Criteria 						
			Akaike (AIC)		40.7276	41.7805	45.0301	47.7050	67.851
			Bayesian (BIC)		39.0037	34.9994	38.2490	45.9811	42.680
			Av. LogL		-3.7394	-3.1781	-3.5030	-4.4372	-3.785
			- Chi-Squared Test - (* V	alues unavailable	without running	a bootstrap]			
			Chi-Sq Statistic		0.0000	0.0000	0.0000	0.0000	0.000
			P-Value*		N/A	N/A	N/A	N/A	N/
			Cr. Value @ 0.750*		N/A	N/A	N/A	N/A	N/
			Cr. Value @ 0.500*		N/A	N/A	N/A	N/A	N/
			Cr. Value @ 0.250*		N/A	N/A	N/A	N/A	N/
			Cr. Value @ 0.150*		N/A	N/A	N/A	N/A	N/
			Cr. Value @ 0.100*		N/A	N/A	N/A	N/A	N/
			Cr. Value @ 0.050*		N/A	N/A	N/A	N/A	N/
			Cr. Value @ 0.025*		N/A	N/A	N/A	N/A	N/
			Cr. Value @ 0.010*		N/A	N/A	N/A	N/A	N/
			Cr. Value @ 0.005*		N/A	N/A	N/A	N/A	N/
			Cr. Value @ 0.001*		N/A	N/A	N/A	N/A	N/
			- Chi-Sq Test (Binning Ir	formation)			1975		14/
			Bin #1 : Minimum	a strate (orig	0.0000	23.0000	0.0000	0.0000	0.000
			Bin #1 : Maximum		+Infinity	46.0000	+Infinity	+Infinity	938.000
			on #1: Maximum						
			Bin #1 : Input		5.0000	5.0000	5.0000	5.0000	5.000

Figure 1-20: Failure of protection system – AIC distribution


Figure 1 21, Foilure of	protoction of	votom DIC distribu	4100
Figure 1-21: Failure of	protection s	ystein – Dic uistribu	uon

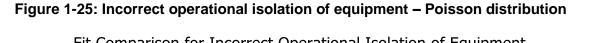
By BIC	\sim		Input	IntUniform	NegBin	Poisson	Hypergeo	Geome
Fit	Value	95% Lower Limit*					N/A	
ntUniform	34.9994	95% Upper Limit*					N/A	
NegBin	38.2490	Conf. Interval Width*					N/A	
Poisson	39.0037	- Distribution Statistics						
Hypergeo	42.6802	Minimum	23.0000	23.0000	0.0000	0.0000	0.0000	0.000
Seomet	45.9811	Maximum	46.0000	46.0000	+Infinity	+Infinity	938.0000	+Infinit
Sinomial	N/A	Mean	30.6000	34.5000	30.6000	30.6000	30.5729	30.600
		Mode	23.0000	23.0000	29.0000	30.0000	30.0000	0.000
		Median	28.0000	34.0000	30.0000	30.0000	30.0000	21.000
		Std. Deviation	9.5551	6.9222	8.2495	5.5317	5.3599	31.096
		Skewness	1.3233	0.0000	0.4180	0.1808	0.1644	2.000
		Kurtosis	4.4468	1.7958	3.2547	3.0327	3.0233	9.001
		- Percentiles						
		5%	23.0000	24.0000	18.0000	22.0000	22.0000	1.000
		10%	23.0000	25.0000	20.0000	24.0000	24.0000	3.000
		15%	23.0000	26.0000	22.0000	25.0000	25.0000	5.000
		20%	23,0000	27,0000	24.0000	26,0000	26.0000	6.000
		25%	23.0000	28.0000	25.0000	27.0000	27.0000	8.000
		30%	23.0000	30.0000	26.0000	28,0000	28,0000	11.000
		35%	23.0000	31.0000	27.0000	28.0000	28.0000	13.000
		40%	23.0000	32.0000	28.0000	29.0000	29.0000	15.000
		45%	28.0000	33.0000	29.0000	30.0000	30.0000	18.000
		50%	28.0000	34.0000	30.0000	30.0000	30.0000	21.000
		55%	28.0000	36.0000	31.0000	31.0000	31.0000	24.000
		60%	28.0000	37.0000	32.0000	32.0000	32.0000	24.000
		65%	33.0000	38.0000	33,0000	33.0000	33.0000	32.000
		70%	33.0000	39.0000	33.0000	33.0000	33.0000	32.000
		70%	33.0000			33.0000	33.0000	43.000
				40.0000	36.0000			
		80%	33.0000	42.0000	37.0000	35.0000	35.0000	50.000
		85%	46.0000	43.0000	39.0000	36.0000	36.0000	58.000
		90%	46.0000	44.0000	41.0000	38.0000	38.0000	71.000
		95%	46.0000	45.0000	45.0000	40.0000	40.0000	93.000
		- Information Criteria						
		Akaike (AIC)		41.7805	45.0301	40.7276	67.8519	47.705
		Bayesian (BIC)		34.9994	38.2490	39.0037	42.6802	45.981
		Av. LogL		-3.1781	-3.5030	-3.7394	-3.7852	-4.437
		Chi-Squared Test - [* Val	ues unavailabl					
		Chi-Sq Statistic		0.0000	0.0000	0.0000	0.0000	0.000
		P-Value*		N/A	N/A	N/A	N/A	N/
		Cr. Value @ 0.750*		N/A	N/A	N/A	N/A	N/.
		Cr. Value @ 0.500*		N/A	N/A	N/A	N/A	N/
		Cr. Value @ 0.250*		N/A	N/A	N/A	N/A	N/
		Cr. Value @ 0.150*		N/A	N/A	N/A	N/A	N/
		Cr. Value @ 0.100*		N/A	N/A	N/A	N/A	N/
		Cr. Value @ 0.050*		N/A	N/A	N/A	N/A	N/
		Cr. Value @ 0.025*		N/A	N/A	N/A	N/A	N/
		Cr. Value @ 0.010*		N/A	N/A	N/A	N/A	N/
		Cr. Value @ 0.005*		N/A	N/A	N/A	N/A	N/
		Cr. Value @ 0.001*		N/A	N/A	N/A	N/A	N/
		- Chi-Sq Test (Binning Inf	ormation)					
		Bin #1 : Minimum		23.0000	0.0000	0.0000	0.0000	0.000
				46.0000	+Infinity	+Infinity	938.0000	+Infinit
		Bin #1 : Maximum						
		Bin #1 : Maximum Bin #1 : Input		5.0000	5.0000	5.0000	5.0000	5.000

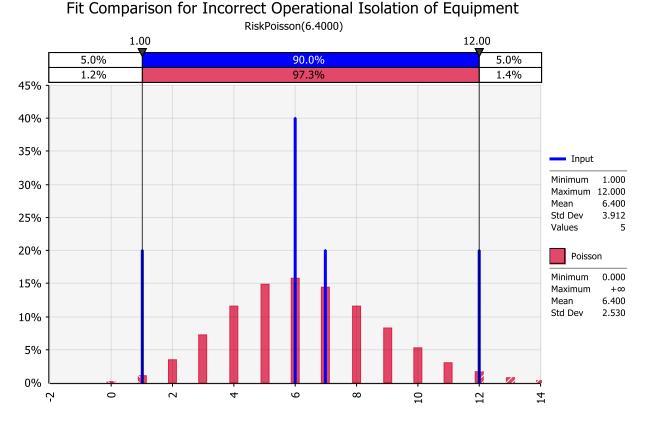
1.4.2 Material failure of SCADA system (discrete)

The @risk software found the Geometric distribution is the most appropriate fit.

Figure 1-22: Material failure of SCADA system – Geometric distribution

lank l	By AIC	~		Input	Geomet	Poisson	IntUniform	NegBin	Hypergeo
F	Fit	Value	95% Lower Limit*						N/4
	Seomet	15.6986	95% Upper Limit*						N/4
	oisson	15.8911	Conf. Interval Width*						N/4
	ntUniform	20.9861	 Distribution Statistics 						
	legBin	22.3571	Minimum	0.0000	0.0000	0.0000	0.0000	0.0000	0.000
	typergeo linomial	42.5944 N/A	Maximum	2.0000	+Infinity	+Infinity	2.0000	+Infinity	25.000
	enorman	N/A	Mean	0.8000	0.8000	0.8000	1.0000	0.8000	0.783
			Mode	0.0000	0.0000	0.0000	0.0000	0.0000	0.000
			Median	0.0000	0.0000	1.0000	1.0000	0.0000	1.000
			Std. Deviation	1.0954	1.2000	0.8944	0.8165	1.0583	0.870
			Skewness	0.6086	2.1667	1.1180	0.0000	1.7008	1.074
			Kurtosis	-0.3333	9.6944	4.2500	1.5000	6.8929	4.073
			- Percentiles						
			5%	0.0000	0.0000	0.0000	0.0000	0.0000	0.000
			10%	0.0000	0.0000	0.0000	0.0000	0.0000	0.000
			15%	0.0000	0.0000	0.0000	0.0000	0.0000	0.000
			20%	0.0000	0.0000	0.0000	0.0000	0.0000	0.000
			25%	0.0000	0.0000	0.0000	0.0000	0.0000	0.000
			30%	0.0000	0.0000	0.0000	0.0000	0.0000	0.000
			35%	0.0000	0.0000	0.0000	1.0000	0.0000	0.000
			40%	0.0000	0.0000	0.0000	1.0000	0.0000	0.000
			45%	0.0000	0.0000	1.0000	1.0000	0.0000	0.000
			50%	0.0000	0.0000	1.0000	1.0000	0.0000	1.000
			55%	0.0000	0.0000	1.0000	1.0000	1.0000	1.000
			60%	0.0000	1.0000	1.0000	1.0000	1.0000	1.000
			65%	2.0000	1.0000	1.0000	1.0000	1.0000	1.000
			70%	2.0000	1.0000	1.0000	2.0000	1.0000	1.000
			75%	2.0000	1.0000	1.0000	2.0000	1.0000	1.000
			80%	2.0000	1.0000	1.0000	2.0000	1.0000	1.000
			85%	2.0000	2.0000	2.0000	2.0000	2.0000	2.000
			90%	2.0000	2.0000	2.0000	2.0000	2.0000	2.000
			95%	2.0000	3.0000	2.0000	2.0000	3.0000	2.000
			- Information Criteria						
			Akaike (AIC)		15.6986	15.8911	20.9861	22.3571	42.594
			Bayesian (BIC)		13.9747	14.1672	14.2050	15.5760	17.422
			Av. LogL		-1.2365	-1.2558	-1.0986	-1.2357	-1.259
			- Chi-Squared Test - [*)	alues unavailable					
			Chi-Sq Statistic		0.0000	0.0000	0.0000	0.0000	0.000
			P-Value*		N/A	N/A	N/A	N/A	N/
			Cr. Value @ 0.750*		N/A	N/A	N/A	N/A	N/
			Cr. Value @ 0.500*		N/A	N/A	N/A	N/A	N/
			Cr. Value @ 0.250*		N/A	N/A	N/A	N/A	N/
			Cr. Value @ 0.150*		N/A	N/A	N/A	N/A	N/
			Cr. Value @ 0.100* Cr. Value @ 0.050*		N/A	N/A	N/A N/A	N/A	N/
					N/A	N/A		N/A	N/
			Cr. Value @ 0.025*		N/A	N/A	N/A	N/A	N/
			Cr. Value @ 0.010* Cr. Value @ 0.005*		N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/
			Cr. Value @ 0.005* Cr. Value @ 0.001*		N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/.
					N/A	N/A	N/A	N/A	N/
			Chi-Sq Test (Binning I	nrormation)	0.0000	0.0000	0.0000	0.0000	0.000
			Bin #1 : Minimum						
			Bin #1 : Minimum Bin #1 : Maximum Bin #1 : Input		+Infinity 5.0000	+ Infinity 5.0000	2.0000	+Infinity 5.0000	25.000


Figure 1-23: Material failure of SCADA system – AIC distribution


Figure 1-24: Material failure of SCADA system – BIC distribution

an	nk By BIO	c ~		Input	Geomet	Poisson	IntUniform	NegBin	Hyperge
	Fit	Value	95% Lower Limit*						N//
7	Geomet	13.9747	95% Upper Limit*						N//
	Poisson	14.1672	Conf. Interval Width*						N//
1	IntUniform		- Distribution Statistics						
2	NegBin	15.5760	Minimum	0.0000	0.0000	0.0000	0.0000	0.0000	0.000
1	Hypergeo	17.4227	Maximum	2.0000	+Infinity	+Infinity	2.0000	+Infinity	25.000
1	Binomial	N/A	Mean	0.8000	0.8000	0.8000	1.0000	0.8000	0.783
			Mode	0.0000	0.0000	0.0000	0.0000	0.0000	0.000
			Median	0.0000	0.0000	1.0000	1.0000	0.0000	1.000
			Std. Deviation	1.0954	1.2000	0.8944	0.8165	1.0583	0.870
			Skewness	0.6086	2.1667	1.1180	0.0000	1.7008	1.074
			Kurtosis	-0.3333	9.6944	4.2500	1.5000	6.8929	4.073
			- Percentiles						
			5%	0.0000	0.0000	0.0000	0.0000	0.0000	0.000
			10%	0.0000	0.0000	0.0000	0.0000	0.0000	0.000
			15%	0.0000	0.0000	0.0000	0.0000	0.0000	0.000
			20%	0.0000	0.0000	0.0000	0.0000	0.0000	0.000
			25%	0.0000	0.0000	0.0000	0.0000	0.0000	0.000
			30%	0.0000	0.0000	0.0000	0.0000	0.0000	0.000
			35%	0.0000	0.0000	0.0000	1.0000	0.0000	0.000
			40%	0.0000	0.0000	0.0000	1.0000	0.0000	0.000
			40%	0.0000	0.0000	1.0000	1.0000	0.0000	0.000
			50%	0.0000	0.0000	1.0000	1.0000	0.0000	1.000
			50%	0.0000	0.0000	1.0000	1.0000	1.0000	1.000
			60%	0.0000		1.0000	1.0000	1.0000	1.000
			60%		1.0000	1.0000	1.0000	1.0000	1.000
				2.0000	1.0000				
			70%	2.0000	1.0000	1.0000	2.0000	1.0000	1.000
			75%	2.0000	1.0000	1.0000	2.0000	1.0000	1.000
			80%	2.0000	1.0000	1.0000	2.0000	1.0000	1.000
			85%	2.0000	2.0000	2.0000	2.0000	2.0000	2.000
			90%	2.0000	2.0000	2.0000	2.0000	2.0000	2.000
			95%	2.0000	3.0000	2.0000	2.0000	3.0000	2.000
			- Information Criteria						
			Akaike (AIC)		15.6986	15.8911	20.9861	22.3571	42.594
			Bayesian (BIC)		13.9747	14.1672	14.2050	15.5760	17.422
			Av. LogL		-1.2365	-1.2558	-1.0986	-1.2357	-1.259
			- Chi-Squared Test - (*)	/alues unavailable	without running a	bootstrap]			
			Chi-Sq Statistic		0.0000	0.0000	0.0000	0.0000	0.000
			P-Value*		N/A	N/A	N/A	N/A	N/
			Cr. Value @ 0.750*		N/A	N/A	N/A	N/A	N/
			Cr. Value @ 0.500*		N/A	N/A	N/A	N/A	N/
			Cr. Value @ 0.250*		N/A	N/A	N/A	N/A	N/
			Cr. Value @ 0.150*		N/A	N/A	N/A	N/A	N/
			Cr. Value @ 0.100*		N/A	N/A	N/A	N/A	N/
			Cr. Value @ 0.050*		N/A	N/A	N/A	N/A	N/
			Cr. Value @ 0.025*		N/A	N/A	N/A	N/A	N/
			Cr. Value @ 0.010*		N/A	N/A	N/A	N/A	N/
			Cr. Value @ 0.005*		N/A	N/A	N/A	N/A	N/
			Cr. Value @ 0.001*		N/A	N/A	N/A	N/A	N/
			- Chi-Sq Test (Binning I	nformation)					
			Bin #1 : Minimum		0.0000	0.0000	0.0000	0.0000	0.000
			Bin #1 : Maximum		+Infinity	+Infinity	2.0000	+Infinity	25.000
			Bin #1 : Input		5.0000	5.0000	5.0000	5.0000	5.000
			Bin #1: Fit		5.0000	5.0000	5.0000	5.0000	5.000

1.4.3 Incorrect operational isolation of primary or secondary equipment (discrete)

Whilst @risk found that the IntUniform distribution is the best fit according to BIC, the Poisson distribution has been adopted, consistent with distribution used for the other sub-parameters with discrete distributions (loss of supply event frequency).

k By AIC	\sim		Input	Poisson	Geomet	IntUniform	NegBin	Hypergeo
Fit	Value	95% Lower Limit*						N//
Poisson	31.8720	95% Upper Limit*						N//
Geomet	32.6398	Conf. Interval Width*						N//
IntUniform	34.8491	- Distribution Statistics						
NegBin	36.9383	Minimum	1.0000	0.0000	0.0000	1.0000	0.0000	0.000
Hypergeo	58.7208	Maximum	12.0000	+Infinity	+Infinity	12.0000	+Infinity	202.000
Binomial	N/A	Mean	6.4000	6.4000	6.4000	6.5000	6.4000	6.386
		Mode	6.0000	6.0000	0.0000	1.0000	5.0000	6.000
		Median	6.0000	6.0000	4.0000	6.0000	6.0000	6.000
		Std. Deviation	3.9115	2.5298	6.8819	3.4521	3.8199	2.479
		Skewness	0.1270	0.3953	2.0053	0.0000	0.9319	0.373
		Kurtosis	4.7929	3.1563	9.0211	1.7832	4.2685	3.127
		- Percentiles						
		5%	1.0000	3.0000	0.0000	1.0000	1.0000	3.000
		10%	1.0000	3.0000	0.0000	2.0000	2.0000	3.000
		15%	1.0000	4.0000	1.0000	2.0000	3.0000	4.000
		20%	1.0000	4.0000	1.0000	3.0000	3.0000	4.000
		25%	6.0000	5.0000	1.0000	3.0000	4.0000	5.000
		30%	6.0000	5.0000	2.0000	4.0000	4.0000	5.000
		35%	6.0000	5.0000	2.0000	5.0000	4.0000	5.000
		40%	6.0000	6.0000	3.0000	5.0000	5.0000	6.000
		45%	6.0000	6.0000	4.0000	6.0000	5.0000	6.000
		50%	6.0000	6.0000	4.0000	6.0000	6.0000	6.000
		55%	6.0000	7.0000	5.0000	7.0000	6.0000	7.000
		60%	6.0000	7.0000	6.0000	8.0000	7.0000	7.000
		65%	7.0000	7.0000	7.0000	8.0000	7,0000	7.000
		70%	7.0000	8.0000	8.0000	9.0000	8.0000	8.000
		75%	7.0000	8.0000	9.0000	9.0000	9.0000	8.000
		80%	7.0000	8.0000	11.0000	10.0000	9.0000	8.000
		85%	12.0000	9.0000	13.0000	11.0000	10.0000	9.000
		90%	12.0000	10.0000	15.0000	11.0000	12.0000	10.000
		90%	12.0000					11.000
			12.0000	11.0000	20.0000	12.0000	14.0000	11.000
		- Information Criteria						
		Akaike (AIC)		31.8720	32.6398	34.8491	36.9383	58.720
		Bayesian (BIC)		30.1481	30.9159	28.0679	30.1572	33.549
		Av. LogL		-2.8539	-2.9306	-2.4849	-2.6938	-2.872
		Chi-Squared Test - (* V	alues unavailable					
		Chi-Sq Statistic		0.0000	0.0000	0.0000	0.0000	0.000
		P-Value*		N/A	N/A	N/A	N/A	N/
		Cr. Value @ 0.750*		N/A	N/A	N/A	N/A	N/
		Cr. Value @ 0.500*		N/A	N/A	N/A	N/A	N/
		Cr. Value @ 0.250*		N/A	N/A	N/A	N/A	N/
		Cr. Value @ 0.150*		N/A	N/A	N/A	N/A	N/
		Cr. Value @ 0.100*		N/A	N/A	N/A	N/A	N/
		Cr. Value @ 0.050*		N/A	N/A	N/A	N/A	N/
		Cr. Value @ 0.025*		N/A	N/A	N/A	N/A	N/
		Cr. Value @ 0.010*		N/A	N/A	N/A	N/A	N/
		Cr. Value @ 0.005*		N/A	N/A	N/A	N/A	N/
		Cr. Value @ 0.001*		N/A	N/A	N/A	N/A	N/
		- Chi-Sq Test (Binning In	formation)					
		Bin #1 : Minimum		0.0000	0.0000	1.0000	0.0000	0.000
		Bin #1 : Maximum		+Infinity	+Infinity	12.0000	+Infinity	202.000
		Bin #1 : Input		5.0000	5.0000	5.0000	5.0000	5.000

Figure 1-26: Incorrect operational isolation of equipment – AIC distribution

Figure 1-27: Incorrect operational isolation of equipment – BIC distribution

Rank By BIC	\sim		Input	IntUniform	Poisson	NegBin	Geomet	Hyperge
Fit	Value	95% Lower Limit*						N//
IntUniform	28.0679	95% Upper Limit*						N//
Poisson	30.1481	Conf. Interval Width*						N//
NegBin	30.1572	- Distribution Statistics						
Geomet	30.9159	Minimum	1.0000	1.0000	0.0000	0.0000	0.0000	0.000
Hypergeo	33.5491	Maximum	12.0000	12.0000	+Infinity	+Infinity	+Infinity	202.000
Binomial	N/A	Mean	6.4000	6.5000	6.4000	6.4000	6.4000	6.386
		Mode	6.0000	1.0000	6.0000	5.0000	0.0000	6.000
		Median	6.0000	6.0000	6.0000	6.0000	4.0000	6.000
		Std. Deviation	3.9115	3.4521	2.5298	3.8199	6.8819	2.479
		Skewness	0.1270	0.0000	0.3953	0.9319	2.0053	0.373
		Kurtosis	4.7929	1.7832	3.1563	4.2685	9.0211	3.127
		- Percentiles						
		5%	1.0000	1.0000	3.0000	1.0000	0.0000	3.000
		10%	1.0000	2,0000	3.0000	2,0000	0.0000	3.000
		15%	1.0000	2.0000	4.0000	3.0000	1.0000	4.000
		20%	1.0000	3.0000	4.0000	3.0000	1.0000	4.000
		25%	6.0000	3.0000	5.0000	4.0000	1.0000	5.000
		30%	6.0000	4.0000	5.0000	4.0000	2.0000	5.000
		35%	6.0000	5.0000	5.0000	4.0000	2.0000	5.000
		40%	6.0000	5.0000	6.0000	5.0000	3.0000	6.000
		45%	6.0000	6.0000	6.0000	5.0000	4.0000	6.000
		50%	6.0000	6.0000	6.0000	6.0000	4.0000	6.000
		55%	6.0000	7.0000	7.0000	6.0000	5.0000	7.000
		60%						7.000
		65%	6.0000 7.0000	8.0000	7.0000	7.0000	6.0000 7.0000	7.000
		70%	7.0000	9.0000	8.0000	8.0000	8.0000	
		70%		9.0000	8.0000	9.0000		8.000
		80%	7.0000			9.0000	9.0000	8.000
		80%	7.0000	10.0000	8.0000		11.0000	
			12.0000	11.0000	9.0000	10.0000	13.0000	9.000
		90%	12.0000	11.0000	10.0000	12.0000	15.0000	10.000
		95%	12.0000	12.0000	11.0000	14.0000	20.0000	11.000
		 Information Criteria 						
		Akaike (AIC)		34.8491	31.8720	36.9383	32.6398	58.720
		Bayesian (BIC)		28.0679	30.1481	30.1572	30.9159	33.549
		Av. LogL		-2.4849	-2.8539	-2.6938	-2.9306	-2.872
		- Chi-Squared Test - [* V	alues unavailabl					
		Chi-Sq Statistic		0.0000	0.0000	0.0000	0.0000	0.000
		P-Value*		N/A	N/A	N/A	N/A	N/
		Cr. Value @ 0.750*		N/A	N/A	N/A	N/A	N/
		Cr. Value @ 0.500*		N/A	N/A	N/A	N/A	N/
		Cr. Value @ 0.250*		N/A	N/A	N/A	N/A	N/
		Cr. Value @ 0.150*		N/A	N/A	N/A	N/A	N/
		Cr. Value @ 0.100*		N/A	N/A	N/A	N/A	N/
		Cr. Value @ 0.050*		N/A	N/A	N/A	N/A	N/
		Cr. Value @ 0.025*		N/A	N/A	N/A	N/A	N/
		Cr. Value @ 0.010*		N/A	N/A	N/A	N/A	N/
		Cr. Value @ 0.005*		N/A	N/A	N/A	N/A	N/
		Cr. Value @ 0.001*		N/A	N/A	N/A	N/A	N/
		- Chi-Sq Test (Binning In	formation)					
		Bin #1 : Minimum		1.0000	0.0000	0.0000	0.0000	0.000
		Bin #1 : Maximum		12.0000	+Infinity	+Infinity	+Infinity	202.000
		Bin #1 : Input		5.0000	5.0000	5.0000	5.0000	5.000
		Bin #1 : Fit		5.0000	5.0000	5.0000	5.0000	5.000