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1. The Capital Asset Pricing Model 
 

The Capital Asset Pricing Model, CAPM predicts that the expected return to the ith 
asset, , is given by ( )iE r

 ( ) ( )i f i m fE r r E r rβ ⎡ ⎤= + −⎣ ⎦ , (1) 

Where fr  is the rate of return to the riskless security and [ ]
[ ]

,i m
i

m

Cov r r
Var r

β = .  

 
Essentially the CAPM describes the excess expected return to the ith asset, ( )iE r r− f  as a risk 
premium. This risk premium may be written as a fixed price per unit of risk, 

( ) [ ]/i m fE r r Var rλ ⎡ ⎤= −⎣ ⎦ m , multiplied by a quantity of risk, [ ],i mCov r r . 

 ( ) [ ],i f i i mE r r Cov r rλ− = , (2) 
 
 
2. Estimation of the Capital Asset Pricing Model 
 

Using raw returns, estimates of [ ]
[ ]

,i m
i

m

Cov r r
Var r

β = may be obtained from the regression 

 , ,i t i i m t i tr r ,α β ε= + + , (3) 
Where, the residual is , ,i t i t i i m tr ,rε α β= − + . Assuming that the risk free rate does not vary 
substantially with time the data may be transformed to excess returns 

 and estimates of , , , , ,;i t i t f t m t m t f tR r r R r r= − = − , iβ may be obtained from the regression 

, ,i t i m t i tR R ,β ε= +      (3’) 
 

2.1 Ordinary Least Squares 
 
 Typically (3) and (3’) are estimated using the method of Ordinary Least Squares, 
OLS. This approach obtains estimates of the parameters of interest iα  and iβ  by minimizing 
the sum of the squared residuals:  

  (4) ( ) ( 222
, , , ,

1 1 1

ˆˆˆ
T T T

i t i t i t i t i i m t
t t t

r r r rε
= = =

= − = − −∑ ∑ ∑ ),α β

 
2.2 Stability of the estimates 
 
 There are some concerns about the validity of the OLS estimator of iα  and iβ  in the 
presence of outliers. In such circumstances the estimates of iα  and iβ  may vary with time. It 
is also possible that estimates of 2

iσ , the variance of the residual, ,i tε , may be affected by the 
presence of outliers. 
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2.2.1 Least Absolute Deviations 
  
 There are a range of possible approaches that may be followed in order to allow for 
outliers, the most popular of which is the Least Absolute Deviations, LAD, approach given 
by 

 , , , ,
1 1 1

T T T

i t i t i t i t i i m t
t t t

r r r rε
= = =

= − = − −∑ ∑ ∑ %%% ,α β   

Here the estimates are obtained by minimizing the absolute value of the residuals. By 
focusing on minimizing the sum of the absolute values of the residuals rather than the sum of 
the squared residuals, the effect of the LAD estimator is to reduce the influence of outlying 
observations.  
 
2.2.2 Recursive Least Squares 
 
 Recursive estimates of the parameters of interest may be obtained by allowing the 
sample to vary in a controlled fashion. There are two main approaches to recursive least 
squares. The first approach employs an expanding window of observations, while the second 
employs a fixed window that is rolled across the sample. 
 
In the case of an expanding window, the first τ observations are used to form the initial 
estimate of iα  and iβ . An additional observation is then added to the estimation window and 
the resulting τ+1 observations are used to compute the second estimate of the coefficient 
vector. This process is repeated until all the observation in the sample have been employed 
yielding T-τ+1 estimates of iα  and iβ . These estimates and their associated standard errors 
may be plotted to detect evidence of time variation in the coefficient vector. Since the sample 
size is increasing from τ to T the standard error bands will generally tighten as the sample size 
increases. 
 
The moving window estimator employs τ observations from the sample of T observations. 
The initial estimates of iα  and iβ  are obtained using the observations 1,2,3,… τ. Subsequent 
estimates are obtained using observations 2,3,… τ+1 etc up until the final estimates obtained 
from observations T-τ to T. Again, these estimates and their associated standard errors may 
be plotted to detect evidence of time variation in the coefficient vector. Since the standard 
errors are calculated using τ observations the resulting standard error bands will generally be 
wider than those based on the full set of T observations. 
 
2.3.3 Hansen’s Test for parameter stability 
 
 Since the recursive and sequential estimates are only visual guides to the stability of 
the estimates, we also report Hansen's (1992) test for parameter stability.1 This test examines 
the regression model (3) for evidence of instability in the residual variance, 2

iσ , the intercept, 

iα , the slope coefficient iβ , and then a joint test for instability in all three measures. In 
performing the Hansen test it is not necessary to impose an arbitrary sample splitting, or to 

                                                 
1 Hansen, B.E. (1992) "Parameter Instability in Linear Models", Journal of Policy Modeling, 14 (4), 1992, pp. 
517-533. 
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choose forecast intervals. Rather it is necessary to estimate the model of interest a single time 
using the full sample of data available to the researcher. The null hypothesis of the Hansen 
(1992) test is that there is no instability in the parameter of interest, while the alternative is 
that there is instability in the parameter of interest. A joint test of the null hypothesis of no 
instability in iα , iβ  and 2

iσ  can be interpreted as a test for parameter stability in the model 
(3). Rejection of the joint null hypothesis indicates that the model suffers from parameter 
instability. 
 

0

1

:  The paramter (model) of interest is stable
:  The paramter (model) of interest is not stable

H
H

 

 
The test has a nonstandard asymptotic distribution which depends upon the number of 
coefficients being tested for stability. The decision rule is straightforward; in the absence of a 
significant test statistic, then the investigator may be reasonably confident that either the 
model has not displayed parameter instability over the sample or that the data is not 
sufficiently informative to reject this hypothesis. In the presence of a significant test statistic, 
the investigator may confidently conclude that the model is misspecified and prone to 
parameter instability. 
 
 
3. Discrete versus continuously compounded returns 
 
 Returns may be calculated discretely or continuously. The discrete return over the 
interval t-1 to t is given by 

 , , 1
,

, 1

i t i t i td
i t

i t

,p p d
r

p
−

−

− +
= , (5) 

Where ,i tp  represents the price of the ith asset at time t, and  represents the value of any 
dividend payment over the interval t-1 to t.  

,i td

 
On the other hand, the continuously compounded return over the interval t-1 to t is given by 
 ( ), , ,ln ( ) /i t i t i t i tr p d p −= + , 1  (6) 
In the work discussed below, returns, whether discretely or continuously compounded are 
calculated from accumulation indices, that is, returns include dividends and capital gains and 
losses. 
 
4. Estimation Results 
 
4.1 Baseline Sample: Firms 

 
Table 1 presents OLS and LAD estimates of β. The consultant was instructed by the 

ACCC to examine data over the period January 1st 2002 to 1st September 2008. This sample 
period was chosen to avoid potential issues associated with the technology bubble. In 
unreported results, the consultant examined data over the period January 1st 2000 to 1st 
September 2008. The results are qualitatively unchanged if this additional data is included.  

 
The data on each asset were sourced from Datastream as was the proxy for the market 
portfolio, in this case the All Ordinaries Index. Where there are less than 348 observations in 
the sample, the firm began trading after January 1st 2002. The exceptions to this are AGKX 
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(sample end date  31st October 2006) and AAN (sample end date August 17th 2007 and GAS 
(sample end date November 17th 2006).  The AAN and GAS data are price index data 
sourced from Bloomberg and provided to the consultant by the ACCC. The actual sample 
dates for each stock are as follows: 

 
SPAU: 16th December 2005 - 1st September 2008 
ENVX: 1st January 2002 - 1st September 2008 
APAX: 1st January 2002 - 1st September 2008 
SKIX: 2nd March 2007 - 1st September 2008 
DUEX: 13th August 2004 - 1st September 2008 
HDFX: 17th December 2004 - 1st September 2008 
AGKX: 1st January 2002 - 31st October 2006  
ORGX 1st January 2002 - 1st September 2008 
AAN:  1st January 2002 – 17th August  2007 
GAS: 1st January 2002 - 17th November 2006 
 
The Datastream identities for each stock and index are provided in the appendix to this 

report. For each of the stocks and equity indices considered, discretely and continuously 
compounded returns to the accumulation indices were calculated.  

 
Given the short sample available for firms such as DUEX, HDFX, SPAU and particularly 
SKIX, the use of monthly data is unlikely to produce statistically valid inference. 
Furthermore, taking into account the problems associated with noise in daily data, a sample 
of weekly data was collected for each firm. Table 1 presents OLS and LAD estimates of the 
regression , ,i t i i m t i tr r ,α β= + + ε  using both continuously and discretely compounded returns 
 

Table 1: Estimates of Equity β 
Discrete Returns: Weekly 

 SPAU ENVX APAX SKIX DUEX HDFX AGKX ORGX AAN GAS 
β̂  0.2602 0.3353 0.6492 0.4821 0.6028 0.7422 0.4114 0.5929 0.6459 0.3767 
s.e 0.1163 0.0717 0.0949 0.1870 0.1131 0.1291 0.0980 0.1170 0.1290 0.1067 
β%  0.2287 0.1372 0.5625 0.6493 0.4268 0.3558 0.3009 0.5309 0.4129 0.2808 
s.e 0.1169 0.0725 0.0950 0.1880 0.1138 0.1322 0.0983 0.1179 0.1300 0.1072 
N 142 348 348 79 212 194 252 348 294 255 

Continuous Returns: Weekly 
 SPAU ENVX APAX SKIX DUEX HDFX AGKX ORGX AAN GAS 
β̂  0.2614 0.3454 0.6483 0.4931 0.5962 0.7564 0.4120 0.5785 0.6410 0.3725 
s.e 0.1160 0.0720 0.0949 0.1881 0.1132 0.1307 0.0973 0.1105 0.1270 0.1046 
β%  0.2271 0.1401 0.5607 0.6368 0.4231 0.3734 0.3015 0.5289 0.4073 0.2769 
s.e 0.1164 0.0729 0.0951 0.1888 0.1139 0.1336 0.0976 0.1113 0.1279 0.1050 
N 142 348 348 79 212 194 252 348 294 255 

 
 
Table 8 in section 5.1 below compares the estimates of β obtained using data sampled at the 
daily, weekly and monthly frequencies. This analysis suggests that the estimates of β 
obtained are broadly comparable across sampling frequencies and concludes that the weekly 
frequency offers a reasonable trade-off between the noise in daily data and the small sample 
issues associated with monthly data. 
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It is clear from table 1 that the choice of discrete or continuous compounding does not 
manifestly affect the magnitude of the estimate obtained using OLS or LAD. Using discretely 
compounded returns and OLS, the minimum estimated value for β across the 10 securities 
considered is 0.2602 for SPAU while the maximum estimated value for β was 0.7422 for 
HDFX. The corresponding minimum and maximum values obtained from the continuously 
compounded returns were 0.2614 (SPAU) and 0.7564 (HDFX), respectively. However, it is 
clear that the estimates themselves vary across estimator, which may suggest the presence of 
outliers or structural instability.  
 
Two of the firms in the sample, AGL and Envestra have relatively long corporate histories. 
The consultant was instructed to examine longer samples for these firms by the ACCC. 
Extending the sample for Envestra to run over the period August 29th 1997 to September 1st 
2008 yielded an OLS estimate of 0.2053 with a standard error of 0.0557.Similarly, extending 
the sample for AGL to begin on January 1st, 1990 and end of October 31st 2006 OLS 
estimation yielded β̂ =0.5056 with a standard error of 0.0555. It is important to note that 
these estimates for AGL were obtained using a variant of the ASX All Ordinaries Index as 
the proxy for the Market portfolio. This alternate proxy for the market portfolio, AUSTOLD, 
is a price rather than accumulation index. No accumulation index for the entire sample period 
1990 onward was available on Datastream. 
 
 
4.2 Alternative estimators of the standard errors 
 
 Table 1b reports OLS estimates of β for the continuously compounded data used in 
table 1 along with the OLS, White and Newey-West standard errors2.  
 

Table 1b: Estimates of Equity β: Robust standard errors 
Continuous Returns: Weekly 

 SPAU ENVX APAX SKIX DUEX HDFX AGKX ORGX AAN GAS 
β̂  0.2614 0.3454 0.6483 0.4931 0.5962 0.7564 0.4120 0.5785 0.6410 0.3725 

Asy 0.1160 0.0720 0.0949 0.1881 0.1132 0.1307 0.0973 0.1105 0.1270 0.1046 
W 0.1404 0.1114 0.1269 0.1746 0.1539 0.1870 0.1216 0.1102 0.1220 0.1053 

N-W 0.1638 0.0977 0.1271 0.1324 0.1462 0.1838 0.1372 0.1140 0.1575 0.1151 
 

Adjusting the standard errors for heteroscedasticity using the White estimator would lead to 
substantially wider confidence intervals for 5 of the 10 stocks considered (SPAU, ENVX, 
APAX, DUEX and AGKX) but would not qualitatively alter the confidence intervals for the 
remaining stocks. Using the Newey-West estimator SPAU, ENVX, APAX, DUEX, HDFX, 
AGKX and AAN would have appreciably wider confidence intervals than those constructed 
using the OLS standard errors, while the other confidence intervals would be similar to, or in 
the case of SKIX substantially narrower than, those constructed using the OLS standard 
errors. 
 
While the Newey-West and White adjusted standard errors tend to be larger than the 
asymptotic standard errors, there are several instances in Table 1b where the degree of 
disagreement between these robust estimators is negligible (APAX, and ORGX). Typically 

                                                 
2 See the technical appendix for an outline of the various approaches to calculating standard errors 
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the White standard errors tend to be larger than the OLS standard errors but smaller than the 
Newey-West standard errors. However, given the problems associated with the choice of q in 
the Newey-West estimator our preference is not to adjust the standard errors for the potential 
presence of heteroscedasticity using the Newey-West estimator.  Were an adjustment to be 
made, the White estimator would appear to be more appropriate.  
 
However, given the lack of clear motivation for any adjustment, and the associated 
difficulties choosing the appropriate method of adjustment, the unadjusted OLS standard 
errors will be reported in all subsequent tables 

 
 
4.3 Structural stability 
 
 Appendix 1 presents recursive estimates of iβ  for each of the i securities using a 
moving window with a fixed width of 52 observations and an expanding window with initial 
width of 52 observations. The results for each security are, in general, remarkably similar. 
First, irrespective of the construction of the recursion, the evidence for each security is 
consistent. Second, there is only weak visual evidence of time variation in the estimates of iβ  
across the plots in appendix 1. That is, there are no occasions when the recursive estimates 
display sudden substantial jumps across all the cases considered. Moreover, there is no 
systematic evidence of regression to unity. For example, figures 1 and 2 suggest that the β for 
SPAU lies somewhere between 0.2 and 0.3 (the OLS estimate in Table 1 is 0.2614). 
Similarly, figures 19 and 20 suggest that the β for GAS lies in the region 0.2 to 0.5 (the OLS 
estimate in Table 1 is 0.3725. In short, the recursive estimation provides no systematic 
evidence of parameter instability in the OLS estimates of (3). 
 
Table 2 presents marginal significance levels, also referred to as p-values, for the Hansen 
(1992) test for structural stability applied to OLS estimates of (3) using continuously 
compounded returns to the accumulation indices. 

 
Table 2: Hansen (1992) Structural Stability Tests 

Continuous Returns: Weekly 
 SPAU ENVX APAX SKIX DUEX HDFX AGKX ORGX AAN GAS 

Joint 0.02 0.00 0.00 0.27 0.00 0.00 0.01 0.27 0.10 0.14 
2σ  0.00 0.00 0.00 0.03 0.00 0.00 0.04 0.12 0.94 0.03 

α  1.00 0.05 0.06 1.0 0.92 0.96 0.86 0.35 0.61 0.91 
β  0.66 0.72 0.02 0.48 0.40 0.02 0.00 0.33 0.03 0.68 

 
There is some evidence of parameter instability in the estimates across the securities. In 6 out 
of 10 cases there is evidence against the joint null of no structural instability at the 10% level 
of confidence or better. In 4 out of 10 cases the joint null is rejected at the 1% level of 
confidence or better. However in 4 out of 10 cases there is evidence against the null 
hypothesis of no instability in β  at the 10% level of confidence or better. Only one of these 
rejections is significant at the 1% level of confidence or better. Many of the rejections of the 
joint null appear to be as a result of instability in 2σ  rather than in β. There is no evidence of 
time variation in α  at the 5% level of confidence. In short, where there is evidence of 
instability in the model, it appears that much of this instability is associated with the variance 
of the error term, and not with the estimates of the coefficients of the model.  
4.4 Baseline Sample: Portfolios 
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As a robustness test, two sets of portfolios were constructed using continuously 

compou

iven the concerns about the impact of takeover activity and the quality of the data available 

he first portfolio, P1, contains ENVX and APA. Data is available for this portfolio over the 

4.4.1 Results for the equally weighted Portfolios 

Table 3: Estimates of β: Equal weight portfolios 
 P5 

nded returns to the accumulation indices. The first set of portfolios was constructed 
assuming equal weights, while the second set was based on value weights. As before, we 
report OLS and LAD estimates of β and in appendix 2 we present recursive estimates of β.  
 
G
for AAN and GAS expressed in section 5.1 below, we exclude these stocks from our 
portfolio analysis. Moreover, data on these stocks is not available for the full sample period 
January 1st 2002 – September 1st 2008 as both stocks were delisted prior to the end of the 
sample. Similarly, AGKX was excluded because of concerns about the impact of corporate 
restructuring on the price data. Finally, given that the focus of ORGX is retail rather 
generation we do not consider this stock.  
 
T
period 1st January 2002 - 1st September 2008. P2 adds DUEX to P1 using data sampled over 
the period 13th August 2004 - 1st September 2008. Adding HDFX to the constituents of P2 
yields the third portfolio sampled over the interval 17th December 2004 - 1st September 2008. 
The fourth portfolio is estimated over the period 16th December 2005 - 1st September 2008 
and contains ENVX, APA, DUEX, HDFX, and SPAU. The fifth portfolio adds SKIX to the 
constituents of the fourth portfolio. Data over the period 2nd March 2007 - 1st September 2008 
is available for the fifth portfolio 
 

 

P1 P2 P3 P4 
Sam le 1 Jan2002 – 13 Aug 2004 – 17 Dec 2004 – 16 Dec 2005 – 2 Mar 2007 – p

 1 Sep 2008 1 Sep 2008 1 Sep 2008 1 Sep 2008 1 Sep 2008 
Com E  E E E Epanies 

 
 

NVX, APA
 
 

NXV,APA,
DUEX 

 

NXV,APA,
DUEX,HDFX

 

NXV,APA,
DUEX,HDFX

SPAU 

NXV,APA, 
DUEX,HDFX 
SPAU,SKIX 

β̂  0.4 95 0.5 0.6 91 9 780 2 0.6181 0.6555 
s.e 0.0629 0.0731 0.0756 0.0799 0.1075 
β%  0.3923 0.5341 0.5511 0.5680 0.6812 
s.e 0.0632 0.0733 0.0759 0.0804 0.1078 

 
The point estimates for β obtained using OLS lie in the region 0.4995 - 0.6555. As 

iven the possibility of parameter instability in the estimates of β obtained using OLS, 

 
more constituents are added to the portfolios the estimated β increases. This increase in β may 
be a result of changes in the cross section as more constituents are added to the portfolio or a 
result of changes in the sample size as less and less time series data is available to the 
researcher as the cross section increases, or both. The point estimates for β obtained using 
LAD lie in the region 0.3923 – 0.6812. The LAD estimates increase monotonically as more 
and more stocks are added to the portfolio and the time series become shorter. 
 
G
recursive estimates of the coefficients are reported in appendix 2. The results of this exercise 
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broadly concur with the results reported in appendix 1 for the individual stocks, discussed in 
section 4.3 above.   
 
Appendix 2 presents recursive estimates of iβ  for each of the equally weighted portfolios. 
Results are reported using a moving window with a fixed width of 52 observations and an 
expanding window with initial width of 52 observations. The results for each portfolio are, in 
general, remarkably similar. First, irrespective of the construction of the recursion, the 
evidence for each portfolio is consistent. Second, there is only weak visual evidence of time 
variation in the estimates of iβ  across the plots in appendix 2. That is, there are no occasions 
when the recursive estimates display sudden substantial jumps across all the cases 
considered. Moreover, there is no systematic evidence of regression to unity. For example, 
Figures 21 – 22 display recursive estimates over the period January 1st 2002 to September 1st 
2008 for portfolio P1 which contains ENVX and APA. The OLS estimate of β is 0.4995 for 
P1, which is consistent with the results in Figures 21 and 22 which suggest that, broadly 
speaking, β lies in the range 0.2 – 0.5. Similarly, figures 37 and 38, which report results for 
the equal weight portfolio P5 suggest that the recursive estimate β rarely deviates 
substantially from 0.6 
 
In table 4, the results of the Hansen tests for parameter instability are reported. The table 
presents marginal significance levels, also referred to as p-values, for the Hansen (1992) test 
for structural stability applied to OLS estimates of (3) using continuously compounded 
returns for each portfolio calculated using accumulation indices. 
 

Table 4: Hansen (1992) Structural Stability Tests: Equal weight portfolios 
 P1 P2 P3 P4 P5 

Sample 
 

1 Jan2002 – 
1 Sep 2008 

13 Aug 2004 –
1 Sep 2008 

17 Dec 2004 –
1 Sep 2008 

16 Dec 2005 –
1 Sep 2008 

2 Mar 2007 – 
1 Sep 2008 

Companies 
 
 

ENVX, APA 
 
 

ENXV,APA,
DUEX 

 

ENXV,APA,
DUEX,HDFX

 

ENXV,APA,
DUEX,HDFX

SPAU 

ENXV,APA, 
DUEX,HDFX 
SPAU,SKIX 

Joint 0.00 0.00 0.00 0.00 0.02 
2σ  0.00 0.00 0.00 0.00 0.01 

α  0.18 0.79 0.88 0.85 0.76 
β  0.06 0.20 0.06 0.41 0.73 

 
In all cases we fail to reject the null hypothesis of no instability in the estimate of β at the 5% 
level of confidence or better. Similarly there was no evidence of instability in the estimates of 
α  at the 10% level of confidence or better. As with the individual stock return data, rejection 
of the joint null hypothesis appears to be as a result of instability in the variance of the 
residual, 2σ rather than as a result of instability in the estimates of α and β across the various 
portfolios.  
 
4.4.2 Results for the value weighted portfolios 
 
Averaging over market capitalization data obtained from obtained from Bloomberg over the 
period January 1st 2002 to September 1st 2008, value weights were calculated for each stock. 
These value weights were then employed to construct value weighted portfolios whose 
constituents match the definitions reported in 4.4.1. 

Table 5: Estimates of β: Value weight portfolios 
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 P1 P2 P3 P4 P5 
Sample 

 
1 Jan2002 – 
1 Sep 2008 

13 Aug 2004 –
1 Sep 2008 

17 Dec 2004 –
1 Sep 2008 

16 Dec 2005 – 
1 Sep 2008 

2 Mar 2007 – 
1 Sep 2008 

Companies 
 
 

ENXV,APA, 
 
 

ENXV,APA, 
DUEX 

 

ENXV,APA, 
DUEX,HDFX

 

ENXV,APA, 
DUEX,HDFX 

SPAU 

ENXV,APA, 
DUEX,HDFX
SPAU,SKIX 

β̂  0.4543 0.5374 0.5609 0.5251 0.5580 
s.e 0.0605 0.0708 0.0729 0.0765 0.1020 
β%  0.3408 0.4018 0.4859 0.4636 0.5503 
s.e 0.0608 0.0715 0.0732 0.0767 0.1023 

 
The point estimates for β obtained using OLS lie in the region 0.4543 - 0.5580. As more 
constituents are added to the portfolios the estimated β increases. Again this increase in β 
may be a result of changes in the cross section or a result of changes in the sample size as less 
and less time series data is available to the researcher as the cross section increases, or both. 
The point estimates for β obtained using LAD lie in the region 0.3408 – 0.5503.  
 
Appendix 2 presents recursive estimates of iβ  for each of the value weighted portfolios. 
Again the results are consistent with those obtained when examining the individual stocks or 
the equal weight portfolios. There is only weak visual evidence of time variation in the 
estimates of iβ  across the plots in appendix 2. That is, there are no occasions when the 
recursive estimates display sudden substantial jumps across all the cases considered. 
Moreover, there is no systematic evidence of regression to unity. This evidence is consistent 
across the value weighted portfolios. For example, figures 27 and 28 present recursive 
estimates of β for portfolio P2 calculated over the period 13th August 2004 to 1st September 
2008 using continuously compounded returns based on accumulation indices. The evidence 
in figures 27 and 28 suggests that the estimates of β lie in the range 0.4 to 0.7 which is 
consistent with the OLS estimate of 0.5374 reported in table 5. Similarly the evidence in 
figures 39 and 40 suggest that the recursive estimates of β obtained for P5 over the period 
March 2nd 2007 to 1st September 2008 lie in the range 0.5 to 0.7, which coincides with the 
OLS estimate of 0.5580 reported in Table 5. 
 
Table 6 displays the results of the Hansen tests for parameter instability using data on the 
various value weighted portfolios. The table presents marginal significance levels, also 
referred to as p-values, for the tests of structural stability applied to OLS estimates of (3) 
using continuously compounded returns for each value weighted portfolio calculated using 
accumulation indices. 
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Table 6: Hansen (1992) Structural Stability Tests: Value weight portfolios 
 P1 P2 P3 P4 P5 

Sample 
 

1 Jan2002 – 
1 Sep 2008 

13 Aug 2004 –
1 Sep 2008 

17 Dec 2004 –
1 Sep 2008 

16 Dec 2005 –
1 Sep 2008 

2 Mar 2007 – 
1 Sep 2008 

Companies 
 
 

ENVX, APA 
 
 

ENXV,APA,
DUEX 

 

ENXV,APA,
DUEX,HDFX

 

ENXV,APA,
DUEX,HDFX

SPAU 

ENXV,APA, 
DUEX,HDFX 
SPAU,SKIX 

Joint 0.00 0.00 0.00 0.00 0.04 
2σ  0.00 0.00 0.00 0.00 0.01 

α  0.10 0.58 0.60 0.83 0.79 
β  0.15 0.34 0.29 0.81 0.46 

 
In all cases we fail to reject the null hypothesis of no instability in the estimate of β at the 5% 
level of confidence or better. Similarly there was no evidence of instability in the estimates of 
α at the 5% level of confidence or better. As with the individual stock return data and the 
equal weight portfolios, rejection of the joint null hypothesis appears to be as a result of 
instability in the variance of the residual, 2σ , yielding rejections of the joint null of no 
parameter instability for all portfolios except P5 where the rejection is marginal at the 5% 
level and is not significant at the 1% level. 
 

 
4.5 Blume3 and Vasicek4 Adjustments. 
 
Blume (1975) inter alia notes that estimated betas that are larger than one tend to be followed 
by estimated betas that are smaller than one and similarly estimates of beta that are smaller 
than unity tend to precede estimates that exceed unity. Blume suggest that this tendency for 
beta to regress towards one requires correction. The Blume estimator for the beta of company 
i is 
 0 1

ˆ
i iβ λ λ β= +B  (7) 

Here β̂  is an OLS estimate of the beta for company i. Blume estimates the weights as 

0 0.33λ =  and 1 0.67λ = . Typically, these values for the weights are employed when 
performing the Blume adjustment. 
 
Vasicek (1973) suggests an alternative approach to correct the estimated beta for any 
tendency to regress towards unity. The Vasicek approach is Bayesian in nature and may be 
written as 

 ( )ˆ 1V
i i

ˆ
i iβ β λ λ= − + β  (8) 

Here β̂  is the sample mean of îβ  obtained from a cross section of companies. The weight iλ  
is calculated as  

                                                 
3 Blume, M. (1975) “Betas and their regression tendencies, Journal of Finance10,(3) 785-795. 
4 Vasicek, O. (1973) “A note on using cross-sectional information in Bayesian estimation of security betas”,  
Journal of Finance 8 (3), 1233-1239. 
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Where 2
pσ  is the sample variance of îβ  obtained from a cross section of companies and 

( )2
îs β  is the square of the standard error of îβ  obtained from the OLS regression used to 

obtain îβ . As with the Blume estimator, the weights in the Vasicek estimator sum to one. 

Table 7a presents the Blume and Vasicek adjustments to îβ  for the continuously 
compounded weekly stock returns reported in section 4.1, while table 7b presents the 
adjustments for the equal and value weighted portfolios discussed in  section 4.4. 
 

Table 7a: Vasicek and Blume adjustments to β: Stocks 
Continuously Returns: Weekly 

 SPAU ENVX APAX SKIX DUEX HDFX AGKX ORGX AAN GAS 
β̂  0.2614 0.3454 0.6483 0.4931 0.5962 0.7564 0.4119 0.5785 0.641 0.3725 

iβ
B  0.5051 0.5614 0.7644 0.6604 0.7295 0.8368 0.6060 0.7176 0.7595 0.5796 
V
iβ  0.3481 0.3736 0.6121 0.5033 0.5673 0.6570 0.4338 0.5598 0.5901 0.4143 

 
The results presented in appendix 1 and 2 suggest that there is little convincing evidence of 
regression to unity in this data. Therefore, it is difficult to justify the application of the Blume 
or Vasicek adjustments. The net effect of the adjustments appears to be to increase the 
magnitude of the estimate of iβ . The results presented in table 7a suggest that the OLS 
estimates of iβ  tend to be smaller than the Vasicek adjusted estimates, which in turn are less 
than the Blume adjusted estimates.  

 

Table 7b: Vasicek and Blume adjustments to β: Portfolios 

 P1 P2 P3 P4 P5 
Sample 

 
1 Jan2002 – 
1 Sep 2008 

13 Aug 2004 – 
1 Sep 2008 

17 Dec 2004 – 
1 Sep 2008 

16 Dec 2005 – 
1 Sep 2008 

2 Mar 2007 – 
1 Sep 2008 

Companies 
 
 

ENXV,APA, 
 
 

ENXV,APA, 
DUEX 

 

ENXV,APA, 
DUEX,HDFX 

 

ENXV,APA, 
DUEX,HDFX 

SPAU 

ENXV,APA, 
DUEX,HDFX 
SPAU,SKIX 

Fixed Weight Portfolios 
β̂  0.4995 0.5780 0.6291 0.6181 0.6555 

iβ
B  0.6647 0.7173 0.7515 0.7441 0.7692 
V
iβ  0.5495 0.5887 0.6090 0.6041 0.6104 

Value Weight Portfolios 
β̂  0.4543 0.5374 0.5609 0.5251 0.5580 

iβ
B  0.6344 0.6901 0.7058 0.6818 0.7039 
V
iβ  0.5037 0.5299 0.5360 0.5266 0.5319 
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The plots of the recursive estimates presented in appendix 2 suggest that there is little 
evidence of regression to unity in the portfolio β. This in turn suggests that application of the 
Blume and Vasicek adjustment may be unwarranted. As with the individual returns, the 
impact of the adjustment is to raise the magnitude of β. Again the OLS estimates of β tend to 

e less than the Vasicek adjusted estimates, which in turn are less than the Blume adjusted 

ittle 
vidence of regression towards unity in β. As a consequence there is scant justification for 

r correction, which simply inflate the estimate of β without justification.  

he results, OLS and LAD estimates of β were obtained using 
ccumulation index data sampled at the daily, weekly and monthly frequency. The sample 

date
 

08 

 
08 

AN:  1st January 2002 – 17th August  2007 

he results are reported in table 8 and are broadly consistent with those reported in table 1 for 

fter any takeover has been agreed, but prior to delisting 
hen the time series dynamics of the share price are unusual. In such circumstances daily 

een the noisy nature of 
the daily data and the lack of degrees of freedom in the monthly data. The best compromise 
would appear to be the use of data sampled at the weekly frequency. 

b
estimates  
 
The Vasicek adjustment has the advantage that the weights are estimated for each cross 
section of β estimates, unlike the Blume adjustment where the weights estimated by Blume 
are typically employed despite their lack of relevance to any cross section of β estimates 
other than those examined by Blume (1975). However, in the current context, there is l
e
employing eithe
 
5. Robustness  
 
5.1 Alternative sampling frequencies for the Australian Data 
 
In order to ensure robustness of t
a

s are as for Table 1, namely 

SPAU: 16th December 2005 - 1st September 20
ENVX: 1st January 2002 - 1st September 2008 
APAX: 1st January 2002 - 1st September 2008 
SKIX: 2nd March 2007 - 1st September 2008 
DUEX: 13th August 2004 - 1st September 2008
HDFX: 17th December 2004 - 1st September 20
AGKX: 1st January 2002 - 31st October 2006  
ORGX 1st January 2002 - 1st September 2008 
A
GAS: 1st January 2002 - 17th November 2006 
 

T
the daily and monthly data and identical for the weekly data.  
 
The evidence presented in table 8 suggests that the choice of sampling frequency is largely 
moot. There is of course one important caveat to this conclusion. In the presence of takeover 
speculation, there may be frequent halts to trading prior to the actual takeover. Also there 
may be substantial periods of time a
w
data may yield unreliable estimates. 
 
The bulk of the work in this report uses data sampled at a weekly frequency. Given the sparse 
nature of the data there are too few monthly observations available for many of the stocks to 
produce statistically reliable estimates of β. For some of the stocks and portfolios considered 
in this report there are less than 30 monthly observations meaning that statistical inference 
using monthly data is unlikely to be reliable. There is a tradeoff betw
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Table 8: Estimates of β: Alternative sampling frequencies 

Continuous Returns: Daily 
 SPAU ENVX APAX SKIX DUEX HDFX AGKX ORGX 
β̂  0.4644 0.4869 0.6863 0.6180 0.6252 0.8353 0.4322 0.6541 
s.e 0.0471 0.0392 0.0434 0.0696 0.0534 0.0500 0.0414 0.0462 
β%  0.3873 0.3737 0.6118 0.5617 0.6571 0.6825 0.4079 0.6891 
s.e 0.0472 0.0393 0.0434 0.0697 0.0534 0.0502 0.0414 0.0463 
N 708 1736 1736 392 1056 970 1260 1736 

Continuous Returns: Weekly 
 SPAU ENVX APAX SKIX DUEX HDFX AGKX ORGX 
β̂  0.2614 0.3454 0.6483 0.4931 0.5962 0.7564 0.4120 0.5785 
s.e 0.1160 0.0720 0.0949 0.1881 0.1132 0.1307 0.0973 0.1105 
β%  0.2271 0.1401 0.5607 0.6368 0.4231 0.3734 0.3015 0.5289 
s.e 0.1164 0.0729 0.0951 0.1888 0.1139 0.1336 0.0976 0.1113 
N 142 348 348 79 212 194 252 348 

Continuous Returns: Monthly 
 SPAU ENVX APAX SKIX DUEX HDFX AGKX ORGX 
β̂  0.3388 0.4038 0.5828 0.6934 0.6849 0.6339 0.2463 0.4287 
s.e 0.1558 0.1353 0.1781 0.1760 0.2023 0.2258 0.1595 0.2266 
β%  0.1728 0.2088 0.6605 0.5153 0.3175 0.4893 0.1051 0.3003 
s.e 0.1684 0.1372 0.1783 0.1816 0.2098 0.2273 0.1618 0.2280 
N 32 80 80 18 48 44 57 80 

 
 
We do not report estimates for Alinta and Gasnet in table 8. Alinta was delisted in October 
2007 but had been a source of buyout speculation from at least January 2007 GasNet was 
delisted in November 2006, but again had been subject to takeover speculation as early as Jun 
2006. The estimates of β for these stocks are not robust to inclusion of data close to the 
takeover. Moreover as the sampling frequency increases the estimates approach zero. For 
example the OLS estimate of β for GasNet obtained using data sampled at a weekly 
frequency over the period 1st January 2002 to 14th November 2006 is 0.3522. If daily data is 
employed this estimate falls to 0.031. Similar effects are noticed with Alinta. Using weekly 
data the OLS estimate of β is 0.6410, which falls to 0.0662 when daily data is employed. As a 
consequence, any inference about the undiversifiable risk of these stocks should be treated 
with some caution unless the takeover period is explicitly excluded. As any choice of the 
reduced sample period is entirely arbitrary, we do not explore this matter any further 
 
5.2 Thin Trading 
 
 Thin trading can create issues with the magnitude of the estimate of β. In effect, if the 
stock does not trade regularly, the OLS estimate of β tends to be biased towards zero. In the 
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literature there are 2 popular approaches to adjusting for thin trading. The Scholes-Williams5 
approach constructs a measure of β as: 

 
( )

( )

1 1

1

ˆ ˆ ˆ

ˆ1 2
i i iSW

i
m

β β β
β

ρ

− ++ +
=

+
 (7) 

Where 1ˆ
iβ
−  is the estimated slope when ri,t is regressed on rm,t-1, ˆ

iβ is the estimated slope 

when ri,t is regressed on rm,t, 1ˆ
iβ
+  is the estimated slope when ri,t is regressed on rm,t+1, and 

1 ˆmρ  is the estimated first order serial correlation coefficient for rm,,t . While the Scholes-

Williams measure of β has the advantage of simplicity, it relies on estimates of 1
îβ
−  and 1

îβ
+  

that are obtained from regressions whose theoretical foundation suggests a potential for 
omitted variable bias. Moreover, calculation of a standard error for (7) is a non-trivial task.  
 
 The Dimson6 approach involves estimation of the regression 
 , 1 , 1 , 1 , 1i t i i m t i m t i m t i tr r r r ,α β β β− − + += + + + + ε , (8) 

The Dimson estimate of β, D
iβ  is obtained from sum of the coefficients of the independent 

variables in equation (8). If the CAPM is the correct model of equilibrium returns then the lag 
and lead of rm,,t are irrelevant variables. Inclusion of these variables may lead to inefficient 
estimates of β, but there is little danger of the potential for bias underlying SW

iβ . 
Additionally, calculation of a standard error for D

iβ  is straightforward. 
 

Table 9 reports estimates of β adjusted for thin trading using the Dimson approach. The 
estimates were obtained using OLS and continuously compounded returns to the various 
accumulation indices. 

 

Table 9: Estimates of β: Thin Trading 

Dimson's Estimator 
 SPAU ENVX APAX SKIX DUEX HDFX AGKX ORGX AAN GAS 

N 142 348 348 79 212 194 252 348 294 255 

1iβ −  -0.0047 -0.0047 -0.2162 -0.0059 -0.1193 -0.1040 -0.0374 0.1856 -0.1875 -0.1010 
s.e 0.1180 0.0732 0.0961 0.1948 0.1159 0.1335 0.0982 0.1122 0.1315 0.1055 

iβ  0.2535 0.3434 0.6726 0.4574 0.6021 0.7539 0.4245 0.5677 0.6535 0.3847 
s.e 0.1168 0.0728 0.0955 0.1915 0.1148 0.1323 0.0984 0.1115 0.1280 0.1057 

1iβ +  -0.1115 0.0509 -0.0425 0.2008 0.0499 0.1634 -0.0708 -0.0972 -0.0143 -0.0823 
s.e 0.1163 0.0725 0.0952 0.1904 0.1146 0.1319 0.0982 0.1111 0.1282 0.1056 

D
iβ  0.1373 0.3896 0.4138 0.6523 0.5326 0.8132 0.3163 0.6560 0.4516 0.2014 

s.e 0.1909 0.1181 0.1549 0.3110 0.1869 0.2161 0.1604 0.1808 0.2088 0.1724 
OLS
iβ  0.2614 0.3454 0.6483 0.4931 0.5962 0.7564 0.4120 0.5785 0.6410 0.3725 

                                                 
5 Scholes, M. and J Williams (1977) “Estimating betas from nonsynchronous data” Journal of Financial 
Economics, 5, 309-327  
6 Dimson, E. and P. Marsh (1983) “The stability of UK risk measures and the problem in thin trading”, Journal 
of Finance, 38 (3) 753-784 
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s.e 0.1160 0.0720 0.0949 0.1881 0.1132 0.1307 0.0973 0.1105 0.1270 0.1046 
t-ratio -0.6506 0.3743 -1.5139 0.6855 -0.3403 0.2628 -0.5966 0.4287 -0.9071 -0.9925 

 
There is little evidence of systematic distortion caused by thin trading. Comparing the 
estimates obtained from the Dimson approach with the OLS estimates, D

iβ < OLS
iβ  in most, 

but not all cases. However, the coefficients associated with the lagged and leads of the return 
to the market portfolio are rarely significant. Moreover, tests of the null hypothesis 

D
0 :  OLS

iH i  β β= are uniformly insignificant. The t-ratio test of the null hypothesis never 
exceeds 2 in absolute value suggesting that there is no statistically significant difference 
between D

iand . OLS
iβ β  

 
On the basis of the evidence in Table 9 there is no support for any adjustment of β to correct 
for thin trading.  
 
5.3 UK Data 
 
Daily, weekly and monthly samples of a comparable UK stock, NG, and proxy for the market 
portfolio FTSE100 over the period 1st January 2002 - 1st September 2008 were collected and 
used to obtain estimates of β using the OLS and LAD estimators. The data were used to 
create continuously compounded returns to the various accumulation indices and the results 
are reported in Table 10. 
 

Table 10: Estimates of β for UK stocks: Alternative sampling frequencies 
 Daily Weekly Monthly

N 1739 348 80 
β̂  0.5439 0.4530 0.5561 
s.e 0.0224 0.0597 0.1282 
β%  0.5334 0.4715 0.6301 
s.e 0.0224 0.0600 0.1293 

 
Table 10 suggests that the choice of sampling frequency is moot when estimating β for NG, 
subject to the potential issues with takeovers affecting the quality of daily prices.   
 

5.4 US Data 

 
Daily, weekly and monthly samples of comparable stocks and the Standard and Poor’s 
Composite Index for the USA over the period 1st January 2002 - 1st September 2008 were 
collected and used to obtain estimates of β using the OLS and LAD estimators. The list of 
companies examined in this section was provided to the consultant by the ACC. The results 
for continuously compounded accumulation returns are reported in Table 11. 
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Table 11: Estimates of β for US stocks: Alternative sampling frequencies 
US Stocks: Daily 

 CHG CNP EAS NI NJ NST NU SRP UIL POM 
β̂  0.6776 0.6802 0.5039 0.6986 0.6678 0.5298 0.5966 0.9614 0.6423 0.6267 
s.e 0.0251 0.0689 0.0282 0.0267 0.0226 0.0208 0.0259 0.0589 0.0310 0.0243 
β%  0.6468 0.7506 0.5183 0.6676 0.7122 0.4722 0.5629 0.8899 0.6160 0.6304 
s.e 0.0251 0.0690 0.0282 0.0267 0.0226 0.0208 0.0259 0.05589 0.0310 0.0243 
N 1736 1736 1736 1736 1736 1736 1736 1736 1736 1736 

US Stocks: Weekly 
 CHG CNP EAS NI NJ NST NU SRP UIL POM 
β̂  0.7054 0.6142 0.4801 0.6802 0.9593 0.5322 0.5966 0.9684 0.7191 0.7447 
s.e 0.0644 0.1594 0.0626 0.0644 0.1204 0.0521 0.0667 0.1621 0.0777 0.0641 
β%  0.6939 0.9231 0.4371 0.7991 0.9679 0.4633 0.6153 0.8577 0.7567 0.8039 
s.e 0.0645 0.1603 0.0626 0.0648 0.1204 0.0523 0.0666 0.1624 0.0778 0.0643 
N 347 347 347 347 347 347 347 347 347 347 

US Stocks: Monthly 
 CHG CNP EAS NI NJ NST NU SRP UIL POM 
β̂  0.4402 1.4706 0.3657 0.6143 0.8806 0.4658 0.5209 1.7964 1.1663 0.6091 
s.e 0.1481 0.3395 0.1503 0.1593 0.2448 0.1285 0.1694 0.4045 0.2097 0.1568 
β%  0.4717 1.0207 0.0636 0.6725 0.6841 0.5674 0.4798 1.3746 1.054 0.5839 
s.e 0.4183 0.3443 0.1544 0.1604 0.2463 0.129 0.1696 0.4074 0.2163 0.1571 
N 80 80 80 80 80 80 80 80 80 80 

 
The evidence in table 11 suggests that the choice of sampling frequency is not important 
when estimating β for the sample of US stocks. The caveat about the impact of takeover 
activity on share price dynamics would suggest that the daily frequency may be less useful 
than weekly and/or monthly data.  
 
6. Delevered/Relevered estimates of β for weekly frequency 

 
Let Aβ  and Eβ  represent the asset and equity β, respectively. Assuming a debt β of zero, the 
delivering/relevering equation is 

 A E
E
V

β β=  

Here E/V is the proportion of equity in the firm’s capital structure. The average gearing level 
is calculated for the sample period used obtain estimates of the firm or portfolio β using data 
obtained from Bloomberg. The level of gearing is usually defined as the book value of debt 
divided by the value of the firm as represented by the sum of the market value of equity and 
the book value of debt. Define the average level of gearing as G , then  

 
DG

D E
=

+
 

Where D is the book value of net debt and E is the market value of equity. The resulting 
corporate gearing assumptions are reported in table 12 
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Table 12: Corporate Gearing Assumptions 
Company Gearing Source 

SPAU 58.76% Bloomberg 
ENVX 71.14% Bloomberg 
APAX 55.04% Bloomberg 
SKIX 52.51% Bloomberg 
DUEX 76.20% Bloomberg 
HDFX 46.52% Bloomberg 
AGKX 27.76% Bloomberg 
ORGX 26.38% Bloomberg 
AAN 65.64% Bloomberg 
GAS 41.79% Bloomberg 

Portfolio   
P1 63.09% Bloomberg 
P2 67.62% Bloomberg 
P3 62.38% Bloomberg 
P4 61.90% Bloomberg 
P5 60.31% Bloomberg 

 
It is possible to show that the appropriate re-levering factor that should be applied to the raw 
beta estimates is: 

 1
1 0.60

Gω −
=

−
 

If it is assumed that ω is constant and that the G  is independent of β̂  then, the re-levered β, 
ˆ

rβ  has a mean of ˆωβ  and a variance of 2 2
β̂

ω σ .  The results of the delevering/relevering 

process for individual stocks are reported in table 13 
 

Table 13: Delevered/Relevered estimates of β for weekly frequency: Stocks 
 SPAU ENVX APAX SKIX DUEX HDFX AGKX ORGX AAN GAS 

N 142 348 348 79 212 194 252 348 294 255 
β̂  0.2695 0.2492 0.7287 0.5854 0.3547 1.0113 0.7441 1.0647 0.9328 0.3200 
s.e 0.1196 0.0519 0.1067 0.2233 0.0674 0.1747 0.1996 0.2034 0.1848 0.0899 
β%  0.2341 0.1011 0.6302 0.7560 0.2517 0.4992 0.5445 0.9734 0.5927 0.2379 
s.e 0.1200 0.0570 0.1069 0.2242 0.0678 0.1786 0.1763 0.2048 0.1861 0.09020 
ω  1.031 0.7215 1.124 1.1873 0.595 1.337 1.806 1.8405 1.4553 0.8590 

  
Considering the delevered/relevered β estimates for the equities the OLS point estimates 
range from 0.2492 to 1.0647. The corresponding delevered LAD estimates range from 0.1011 
to 0.9734.  
 
Similarly, the portfolio betas were delevered/relevered. The results are reported in table 14 
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Table 14: Delevered/Relevered estimates of β for weekly frequency: Portfolios 
Equal Weighted Portfolios 

 P1 P2 P3 P4 P5 
β̂  0.4609 0.46782 0.5916 0.5887 0.6243 
s.e 0.0580 0.05917 0.0711 0.0761 0.1024 
β%  0.3620 0.43229 0.5183 0.5410 0.6488 
s.e 0.0583 0.05933 0.0714 0.0766 0.1027 

Value Weighted Portfolios 
 P1 P2 P3 P4 P5 
β̂  0.4192 0.4350 0.5276 0.5001 0.5314 
s.e 0.0558 0.0573 0.0686 0.0729 0.0971 
β%  0.3145 0.3252 0.4570 0.4415 0.5241 
s.e 0.0561 0.0579 0.0688 0.0730 0.0974 

 
The delevered/relevered OLS estimates of β for the equal weight portfolios range from 
0.4609 to 0.6243, while the corresponding estimates for the value weighted portfolios range 
from 0.4192 to 0.5314. 
  
7. Other Influences on Estimated Betas 

 
Under paragraph 29 of the contract the ACC requested that, where possible, the consultant 
should quantify the influence of the following factors on the empirical beta estimates: 

1. The regulated asset’s place in supply stream (i.e. transmission or distribution); 

2. The regulated assets industry (i.e. electricity, gas); and 

3. The form of regulatory revenue control (i.e. revenue cap, average revenue cap, 
weighted average price cap, hybrid). 

 
Given the paucity of the data available it is very difficult to make any meaningful 
contribution on any of these issues. Ideally if a larger sample of companies were available it 
would be possible to split this sample into transmission and distribution subsamples and 
search for systematic biases within the subsamples. However, given that there are only 10 
stocks in the sample any variation in beta across sub-samples cannot be reliably detected. 
Similar comments apply to the industry and form of regulatory control. Even were the data 
to be pooled to include the overseas firms there is insufficient data in the cross section to 
address these issues. 

 
8. Summary of advice 
 
 The following is a brief set of conclusions that have drawn from working with the 
data described in this document. 
 
8.1  Sampling Frequency 
  
 A reasonable compromise is to sample the data at a weekly frequency. Given the 
sparse nature of the data there are too few monthly observations available for many of the 
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stocks to produce statistically reliable estimates of β. For some of the stocks and portfolios 
considered in this report there are less than 30 monthly observations meaning that statistical 
inference is unlikely to be reliable. There is a tradeoff between the noisy nature of the daily 
data and the lack of degrees of freedom in the monthly data. The best compromise would 
appear to be the use of data sampled at the weekly frequency. 
 
8.2 Construction of Returns 
  
 Given the results presented above the compounding method does not appear to be an 
issue. While it is usual to employ continuously compounded returns there is no evidence that 
β estimates obtained from discretely compounded data are manifestly different.  
 
8.3 Parameter Instability 
 
 With one important exception, there is no overwhelming issue with instability. It is 
the case that the OLS and LAD estimates of β differ. However as the estimators are 
maximizing very different functions, this difference is somewhat unsurprising.  
 
 Neither of the recursive least squares estimators appears to demonstrate convincing 
evidence of parameter instability. It is important to note that these estimators are not 
sufficient in the sense that they do not employ all available information. The use of the 
Hansen (1992) test for parameter instability produces systematic evidence of instability in the 
regression models. Where this instability is detected it is almost uniformly due to a change in 
the error variance in the regression model. There is no evidence of parameter instability 
associated with the coefficients of the regression models themselves. 
 
 An exception occurs in the cases of GasNet and Alinta where the estimated betas 
approach zero as the sampling frequency increases. This appears to be related to the effects of 
takeover speculation and trading halts prior to the delisting of these stocks. The exclusion of 
such periods from the sample is very important, but is also arbitrary and depends entirely on 
the researcher. In short, any estimates of the undiversifiable risk of GasNet and Alinta should 
be treated with some caution. 
 
8.5 Standard Errors  
 
 There is evidence of structural instability in the variance of the errors in the estimated 
model. If there is instability in 2σ  it should be possible to date this instability and adjust the 
model appropriately. Dating this instability and appropriate adjustment are beyond the scope 
of this report. However, both the White (1980) and Newey-West (1987) estimators correct for 
heteroscedasticity of unknown form. If the instability can dated a simple correction for 
heteroscedasticity of a known form can be made. 
 
It is not clear what the implications of this instability are for the performance of the White 
(1980) and Newey-West (1987) approaches to calculating standard errors. Given the 
difficulties associated with choosing the optimal lag length in the non-parametric estimator of 
the long run variance, the Newey-West approach appears potentially most fragile. While the 
confidence intervals obtained using the White and Newey-West corrections can differ from 
than those obtained using the OLS standard errors, there is no evidence of systematic bias in 
the standard errors. 
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8.6 Alternative data 
 
 Re-estimation of the various regression models using US and UK data does not alter 
the conclusions one would draw about the magnitude of the point estimates β. Similarly 
delevering does not lead to a revision of the conclusions about the magnitude of β. Rather it is 
the case that the balance of the evidence points towards the point estimate of β lying in the 
range 0.4 to 0.7. 
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Appendix 1 
Recursive Estimates of β 

Individual Stocks 

Recursive estimates of BETA
Using a moving window of width 52

BETA +1.96 Std. Err. -1.96 Std. Err.
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Figure 1: SPAU, Moving Window. 16th December 2005 – 1st September 2008 
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Figure 2: SPAU, Expanding Window. 16th December 2005 – 1st September 2008 
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Recursive estimates of BETA
Using a moving window of width 52

BETA +1.96 Std. Err. -1.96 Std. Err.
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Figure 3: EVX, Moving Window. 1st January 2002 – 1st September 2008 
 

Recursive estimates of BETA
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Figure 4: EVX, Expanding Window. 1st January 2002 – 1st September 2008 
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Recursive estimates of BETA
Using a moving window of width 52

BETA +1.96 Std. Err. -1.96 Std. Err.
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Figure 5: APAX, Moving Window. 1st January 2002 – 1st September 2008 
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Figure 6: APAX, Expanding Window. 1st January 2002 – 1st September 2008 
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Recursive estimates of BETA
Using a moving window of width 52

BETA +1.96 Std. Err. -1.96 Std. Err.
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Figure 7: SKIX, Moving Window. 2nd March 2007 – 1st September 2008 
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Figure 8: SKIX, Expanding Window. 2nd March 2007 – 1st September 2008 
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Recursive estimates of BETA
Using a moving window of width 52

BETA +1.96 Std. Err. -1.96 Std. Err.
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Figure 9: DUEX, Fixed Window. 13th August 2004 – 1st September 2008 
 

Recursive estimates of BETA

BETA +1.96 Std. Err. -1.96 Std. Err.

2006 2007 2008
-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

 
Figure 10: DUEX, Expanding Window. 13th August 2004 – 1st September 2008 
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Recursive estimates of BETA
Using a moving window of width 52

BETA +1.96 Std. Err. -1.96 Std. Err.
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Figure 11: HDFX, Moving Window. 17th December 2004 – 1st September 2008 

Recursive estimates of BETA
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Figure 12: HDFX, Expanding Window. 17th December 2004 – 1st September 2008 
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Recursive estimates of BETA
Using a moving window of width 52

BETA +1.96 Std. Err. -1.96 Std. Err.
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Figure 13: AGKX, Moving Window. 1st January 2002 – 31st October 2006 
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Figure 14: AGKX, Expanding Window. 1st January 2002 – 31st October 2006 
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Recursive estimates of BETA
Using a moving window of width 52

BETA +1.96 Std. Err. -1.96 Std. Err.
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Figure 15: ORGX, Moving Window. 1st January 2002 – 1st September 2008 

Recursive estimates of BETA

BETA +1.96 Std. Err. -1.96 Std. Err.

2003 2004 2005 2006 2007 2008
-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

 
Figure 16: ORGX, Expanding Window. 1st January 2002 – 1st September 2008 
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Recursive estimates of BETA
Using a moving window of width 52

BETA +1.96 Std. Err. -1.96 Std. Err.
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Figure 17: AAN, Moving Window. 1st January 2002 – 17th August 2007  

Recursive estimates of BETA
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Figure 18: AAN, Expanding Window. 1st January 2002 – 17th August 2007 
 
Data after 17th August 2007 is not available due to the delisting of AAN
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Recursive estimates of BETA
Using a moving window of width 52

BETA +1.96 Std. Err. -1.96 Std. Err.
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Figure 19: GAS, Moving Window. 1st January 2002 – 17th November 2006 
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Figure 20: GAS, Expanding Window. 1st January 2002 – 17th November 2006 
Data after 17th August 2007 is not available due to the delisting of GAS 
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Appendix 2 
Recursive Estimates of β 

Portfolios 

Recursive estimates of BETA
Using a moving window of width 52

BETA +1.96 Std. Err. -1.96 Std. Err.
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Figure 21: P1, Moving Window. 1st January 2002 – 1st September 2008 Equal Weights 

Recursive estimates of BETA
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Figure 22: P1, Expanding Window. 1st January 2002 – 1st September 2008 Equal Weights 
The sample period corresponds to the maximum span of data available for the elements of the 
Portfolio within the period 1st January 2002 – 1st September 2008
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Recursive estimates of BETA
Using a moving window of width 52

BETA +1.96 Std. Err. -1.96 Std. Err.
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Figure 23: P1, Moving Window. 1st January 2002 – 1st September 2008 Value Weights 
 

Recursive estimates of BETA
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Figure 24: P1, Expanding Window. 1st January 2002 – 1st September 2008 Value Weights 
The sample period corresponds to the maximum span of data available for the elements of the 
Portfolio within the period 1st January 2002 – 1st September 2008
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Recursive estimates of BETA
Using a moving window of width 52

BETA +1.96 Std. Err. -1.96 Std. Err.
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Figure 25: P2, Moving Window. 13th August 2004 – 1st September 2008 Equal Weights 
 

Recursive estimates of BETA
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Figure 26: P2, Expanding Window. 13th August 2004 – 1st September 2008 Equal Weights 
The sample period corresponds to the maximum span of data available for the elements of the 
Portfolio within the period 1st January 2002 – 1st September 2008
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Recursive estimates of BETA
Using a moving window of width 52

BETA +1.96 Std. Err. -1.96 Std. Err.
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Figure 27: P2, Moving Window. 13th August 2004 – 1st September 2008 Value Weights 
 

Recursive estimates of BETA
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Figure 28: P2, Expanding Window. 13th August 2004 – 1st September 2008 Value Weights 
The sample period corresponds to the maximum span of data available for the elements of the 
Portfolio within the period 1st January 2002 – 1st September 2008
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Recursive estimates of BETA
Using a moving window of width 52

BETA +1.96 Std. Err. -1.96 Std. Err.
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Figure 29: P3, Moving Window. 17th December 2004 – 1st September 2008 Equal Weights 

Recursive estimates of BETA

BETA +1.96 Std. Err. -1.96 Std. Err.
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Figure 30: P3, Expanding Window. 17th December 2004 – 1st September 2008 Equal Weights 
The sample period corresponds to the maximum span of data available for the elements of the 
Portfolio within the period 1st January 2002 – 1st September 2008
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Recursive estimates of BETA
Using a moving window of width 52

BETA +1.96 Std. Err. -1.96 Std. Err.
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Figure 31: P3, Moving Window. 17th December 2004 – 1st September 2008 Value Weights 
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Figure 32: P3, Expanding Window. 17th December 2004 – 1st September 2008 Value Weights 
The sample period corresponds to the maximum span of data available for the elements of the 
Portfolio within the period 1st January 2002 – 1st September 2008
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Recursive estimates of BETA
Using a moving window of width 52

BETA +1.96 Std. Err. -1.96 Std. Err.

2007 2008
-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

 
Figure 33: P4, Moving Window. 16th December 2005 – 1st September 2008 Equal Weights 

Recursive estimates of BETA
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Figure 34: P4, Expanding Window. 16th December 2005 – 1st September 2008 Equal Weights 
The sample period corresponds to the maximum span of data available for the elements of the 
Portfolio within the period 1st January 2002 – 1st September 2008
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Recursive estimates of BETA
Using a moving window of width 52
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Figure 35: P4, Moving Window. 16th December 2005 – 1st September 2008 Value Weights 

Recursive estimates of BETA

BETA +1.96 Std. Err. -1.96 Std. Err.

2007 2008
-0.2

0.0

0.2

0.4

0.6

0.8

1.0

 
Figure 36: P4, Expanding Window. 16th December 2005 – 1st September 2008 Value Weights 
The sample period corresponds to the maximum span of data available for the elements of the 
Portfolio within the period 1st January 2002 – 1st September 2008
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Recursive estimates of BETA
Using a moving window of width 52

BETA +1.96 Std. Err. -1.96 Std. Err.
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Figure 37: P5, Moving Window. 2nd March 2007 – 1st September 2008 Equal Weights 

Recursive estimates of BETA
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Figure 38: P5, Expanding Window. 2nd March 2007 – 1st September 2008 Equal Weights 
The sample period corresponds to the maximum span of data available for the elements of the 
Portfolio within the period 1st January 2002 – 1st September 2008

40 
 



Recursive estimates of BETA
Using a moving window of width 52

BETA +1.96 Std. Err. -1.96 Std. Err.
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Figure 39: P5, Moving Window. 2nd March 2007 – 1st September 2008 Value Weights 

Recursive estimates of BETA

BETA +1.96 Std. Err. -1.96 Std. Err.
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Figure 40: P5, Expanding Window. 2nd March 2007 – 1st September 2008 Value Weights 
The sample period corresponds to the maximum span of data available for the elements of the 
Portfolio within the period 1st January 2002 – 1st September 2008 
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Appendix 3:  
Data Sources 

 
Company Data Sources7

Ticker Source Ticker Source 
NG DS A:SPAU DS 
U:CHG DS A:ENVX DS 
U:CNP DS A:APAX DS 
U:EAS DS A:SKIX DS 
U:NI DS A:DUEX DS 
U:NJR DS A:HDFX DS 
U:NST DS A:AGKX DS 
U:NU DS A:ORGX DS 
U:SRP DS ALN BB 
U:UIL DS GAS BB 
U:POM DS   

 
Market Portfolio Proxies 

Country Index Ticker Source 
UK Financial Times 

100 Index 
FTSE 100 DS 

US Standard and 
Poor’s 

Composite Index 

S&PCOMP DS 

Australia All Ordinaries 
Index 

ASXAORD DS 

Australia Standard and 
Poor’s ASX 200 

Index 

ASX200I DS 

 

                                                 
7 DS: Datastream BB: Bloomberg 
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Appendix 4: 
Estimating standard errors 

 
Writing the model in matrix form  
 Y X β ε= +  A 4.1 
Where Y is a T dimensional vector containing observations on the dependent variable, the 
return to the ith  asset,  X is a T×k vector of explanatory variables, ,i tr β  is a k dimensional 
vector of coefficients and ε is a T-dimensional vector of errors. The OLS estimator may be 
written as 
 ( ) 1ˆ ' 'X X X Yβ −=  A 4.2 
Here the standard errors are calculated as the square root of the diagonal elements of the 
covariance matrix. This matrix Σ may be calculated as   
 ( ) 12 's X X −Σ = , A 4.3 

Where . The standard errors in table 1 are not corrected for 
heteroscedasticity.  

(2 ˆ ˆ' /s Tε ε= − )k

 
There are many possible approaches to correcting the standard errors for heteroscedastiticy. 
One possible approach is to use the White (1980)8 estimator of the variance covariance 
matrix of the parameters to correct for heteroscedasticity of unknown form. The White 
estimator is  

 ( ) ( )1 2

1

ˆ ' '
T

W t t t
t

T 1'X X x x X
T k

ε X− −

=

⎛ ⎞Σ = ⎜ ⎟− ⎝ ⎠
∑  A 4.4 

The White estimator assumes that the residuals are free from serial correlation, an assumption 
that is likely to be valid when examining equity returns.  
 
Newey and West (1987)9 propose an estimator of Σ that is robust in the presence of both 
heteroscedasticity of unknown form and autocorrelation. The estimator may be written as 

 ( ) ( )1 ˆˆ ' 'HAC
T 1X X X X

T k
− −Σ = Ω

−
 A 4.5 

Here  is calculated as Ω̂

 2 '

1 1 1

ˆ ' 1
1

qT T

t t t t t t t t t t t
t t

T 'x x x u u x x
T k q ν ν ν ν

ν ν

νε − − − −
= = = +

⎧ ⎫⎛ ⎞⎛ ⎞⎪ ⎪Ω = + − +⎨ ⎬⎜ ⎟⎜ ⎟− +⎝ ⎠⎪ ⎪⎝ ⎠⎩ ⎭
∑ ∑ ∑ u u x

                                                

 A 4.6 

Critically, q is the truncation lag, the number of autocorrelations included in the 
nonparametric estimate of the long run variance. Note that q is a parameter to be chosen by 
the researcher. This study employed the rule q=T0.25 for the sample January 1st 2002 to 
September 1st 2008. This results in a choice of q=4 for the 348 weekly observations in the 
sample. 
 

 
8 White, H. (1980).“A heteroskedasticity-consistent covariance matrix and a direct test for heteroskedasticity,” 
Econometrica, 48, 817–838. 
9 Newey, W. and K. West (1987) “A simple positive semi-definite, heteroskedasticity and autocorrelation 
consistent covariance matrix,” Econometrica, 55, 703–708. 
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