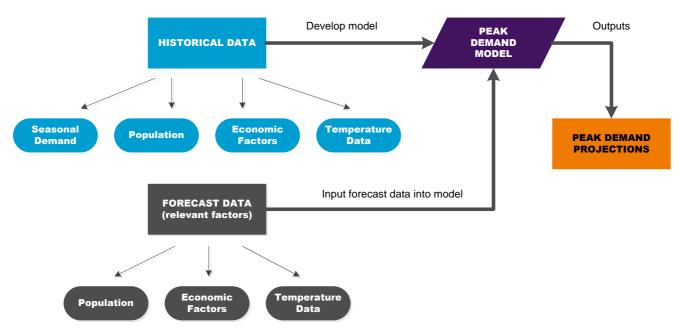


Attachment C1:

Peak Demand Forecast

Actew/AGL 800


Contents

1.	Description of ActewAGL demand forecasting model	3
1.1	Method – bottom up (trend) forecast	3
1.2	Method – top down (econometric) forecast	3
2.	Key features of the ActewAGL demand forecast	4
3.	Detailed forecasting methodology	5
3.1	Modelling principles	5
3.2	Statistical modelling method	5
3.3	Segmentation of summer/winter scenarios	5
3.4	Determine potential explanatory variables	5
3.5	Steps taken to develop model/forecast	6
4.	ActewAGL demand forecast	9
4.1	Forecast excluding effect of future augmentation projects	9
4.2	Forecast taking account of future augmentation projects	12
4.3	Assumed load transfers	14
5.	Forecast Outcomes	15
5.1	System Forecast	15
5.2	Belconnen Zone	21
5.3	City East Zone	33
5.4	Civic Zone	45
5.5	Fyshwick Zone	57
5.6	Gilmore Zone	69
5.7	Gold Creek Zone	81
5.8	Latham Zone	93
5.9	Telopea Park Zone	105
5.10	Theodore Zone	117
5.11	Wanniassa Zone	129
5.12	Woden Zone	141
5.13	Block Loads Data	153
6.	Reconciliation between forecasts	157
6.1	Loss Factors	157
6.2	Diversity Factors	157
6.3	Summer Demand Forecast	158
6.4	Winter Demand Forecast	
7.	Responses to other items in RIN Schedule 1 section 8	162

1. Description of ActewAGL demand forecasting model

Zone demand is forecast using models based on multiple linear regressions. The following figure depicts the demand forecasting process using the model, and the following commentary outlines the step by step process followed in loading the input data, undertaking the regression analysis, identifying correlation of independent variables, and producing the 10% and 50% PoE demand forecasts.

Figure 1: Overview of ActewAGL Demand Forecasting Model

This section is a brief summary of the approach taken to forecasting peak demand. More details are in the following sections.

1.1 Method – bottom up (trend) forecast

Forecasts for each zone were developed using a bottom-up / trend forecast. Multiple linear regression was used to determine the underlying trend as well as the effect of various weather factors, particularly temperature. Known upcoming new customer block loads were also added into the zone forecasts.

1.2 Method – top down (econometric) forecast

The development of the system level forecast followed a similar method as for the zone level forecasts, with the addition of various econometric/demographic variables. It was established that the only statistically significant variables were weather factors and population. Block loads were not considered for the top-down forecast.

2. Key features of the ActewAGL demand forecast

Some of the key features and characteristics of the ActewAGL demand forecasting model and techniques are:

- The demand forecast is a weather corrected forecast, with the zone substation forecast reconciled to the system forecast, and with the system demand reconciled to actual and forecast energy consumption, to show the trend in historical and future average annual load factor.
- The model uses about nine years of historical demand data, and about 20-30 years of historical temperature data.
- The input demand data used in the model has recently been changed to the highest three daily maximum demands in Summer, and the lowest 3 maximum demands in Winter
- The impact of temporary load transfers is removed wherever possible from historical demand figures.
- Initially, ActewAGL modelled a wide range of independent variables, including GDP growth, population, temperature variables, and others. Ultimately ActewAGL found that there were no strong correlations, except to one or more of the selected temperature variables

Variable	Definition
Year	Year
MaxTemp	The daily maximum temperature
CDD	The daily cooling degree days, defined as Max (0, Average daily temperature - CDD Threshold)
3DayCDD	The sum of the no. of cooling degree days in the previous three days
MinTemp	The daily minimum temperature
HDD	The daily heating degree days, defined as Max (0, HDD Threshold – Average daily temperature)
3DayHDD	The sum of the no. of heating degree days in the previous three days

• The model uses several different temperature variables as shown in the table below:

- The final suite of correlation variables may differ from zone substation to zone substation, depending on the strength of the correlation with each variable
- The ActewAGL modelling software internally correlates demand and temperature input variables, and
 produces a weather corrected demand forecast, but it does not explicitly weather correct the historical
 demand input data. This is somewhat different to other modelling techniques in which the historical
 demand data is weather corrected before input into the forecasting model
- Known block load increases are taken into account in the first 18-24 months of the zone substation forecast. However only the extent to which known block load increases exceed the historical trend in annual demand increase (not the whole block load increase), is added to the forecast. No block load increases are taken into account beyond about 2 years.
- The forecasting model produces 10% and 50% PoE demand forecasts based on the 90th percentile, and median weather variables, respectively.

3. Detailed forecasting methodology

3.1 Modelling principles

The best-practice modelling/forecasting principles that ActewAGL adheres to are described in the table below.

Principle	Description
Data	Obtain reliable and unbiased data from reputable sources, conduct data checks to remove/repair erroneous data and manage data effectively.
Model calibration	Use appropriate statistical estimation methods.
Parsimony	Use only as many parameters as necessary to fit the model, to minimise unnecessary complexity and allow model to be easily replicable.
Fit to theory	Choose models which are supported by relevant theory.
Fit to evidence	Show that the model adequately accounts for history used in calibration (conduct back-testing).
Logical model	Explanatory variables in the model should have theoretical basis, and have theoretically correct signs.
Model validation	Analyse the statistical significance of variables, goodness of fit, diagnostic checking of residuals etc.
Model documentation	Detailed and thorough documentation of modelling process to ensure transparency and repeatability.
Version source control	Track changes made to models.

3.2 Statistical modelling method

The models chosen for the system/zone level forecasts are based on multiple linear regression. Other methods such as time series modelling were also considered and attempted, but were ultimately rejected. For example, time series modelling did not work well because it weights recent observations much heavier than older observations, which leads to severe distortions due to some exceptionally low demands in 2012.

All statistical modelling and forecasting was performed using the R statistical program.

3.3 Segmentation of summer/winter scenarios

Summer and winter forecasts (corresponding to the calendar year seasons) are developed. The other seasons are disregarded in the modelling. This is done because peak demands usually occur in summer and winter where there are severe weather conditions. Moreover, summer and winter demands are modelled separately, as they are observed to have different drivers/patterns of demand.

3.4 Determine potential explanatory variables

Forecast Type	Potential explanatory variables								
System Level	Economic/demographic variables such as GDP, GSP growth, unemployment rate, population etc.								
Zone Substation Level	Time trend (implicitly factors in the various possible causes of a change in demand over time), temperature variables: maximum daily temperature, cooling degree days etc.								

This follows the industry best practice load forecasting process which advocates the analysis of top-down econometric variables at the system level, while conducting trend analysis at the zone substation level and below.

ActewAGL 860

3.5 Steps taken to develop model/forecast

3.5.1 Steps to develop zone level forecast

Step 1: Collect historical data

This step involves the collection and verification of historical data – peak demand data from internal databases, as well as historical data for the potential explanatory variables. All external data is obtained from reputable sources such as the ABS, BIS Shrapnel and BOM.

Step 2: Adjusting for load transfers/switching

There is currently very limited information available on load transfers/switching. This makes it hard to adjust for any temporary switching/load transfers. However, inter-zone load transfers are not very common/significant in ActewAGL's network, and thus the impact of load switching is generally not material.

Where deemed material, the effects of load transfers/switching are approximated and accounted for -e.g. abnormal historical maximum demands caused by temporary switching will be eliminated, and permanent load transfers will be factored into the model regression.

Step 3: Develop model (model selection)

Three daily peak demand points from each year's summer/winter are extracted for the last 10 years for each of the zones. Historical data for potential explanatory variables corresponding to the dates of the peak demand are also obtained. For example, if a peak demand of 50 MVA occurred in Fyshwick Zone on 20/01/2008, then the maximum temperature/CDD for that day is also used.

Using the above data, with peak demand as the dependent variable and the other variables as explanatory variables, separate possible regression models (each with different explanatory variables) are fitted. The model that fits the data "best" is then selected to be the final model used in subsequent forecasting. The way the "best" model is determined is described in the table below.

1	All subsets approach	Fit all possible models and compare them. This is done with consideration given to the principle of parsimony: "Fit the smallest possible model while making the most possible explanation". Compare the models based on various criteria: R-squared adj., PRESSp, Cp. Make value judgment after considering all of the factors.
		• R-squared adj. is the proportion of variability in response that is explained by the model, penalized by number of variables. A good model has high R-squared adj.
		PRESSp is the Prediction Sum of Squares – based on cross-validation. Good models have small PRESSp.
		 Mallow's Cp - checks if the model is "right" – models that are too small (underfitting) are biased compared with the true model, while models that are too big (overfitting) results in models with inflated variances. GOAL: Values of Cp near p with p as small as possible achieve a satisfactory "bias-variance" trade off.
		*p refers to the number of explanatory variables in model
2	Stepwise (sequential) procedures	Goal: to find "good" models without necessarily having to check all the bad models. Forward stepwise regression – ensures that the model only includes variables which are significant – meeting a certain F-stat cut-off.

Table 3.1: Model Selection: Two Main Approaches

In ActewAGL's model selection criteria, Method 2 is mainly used, checked against Method 1 to ensure that the right variables are in the model.

- *Note 1: Model selection is conducted for each zone across different seasons. The implication of this is that each zone could have a different model, which only contains the most significant variables specific to it.
- *Note 2: It may be noted that no explicit weather correction is conducted prior to model fitting and regression. This is due to the fact that multiple linear regression is conducted with temperature variables in the model, implicitly correcting for weather.

Step 4: Obtain 10% and 50% PoE weather condition data

In order to forecast future peak demand, 10% and 50% PoE weather condition data are required to be input into the model. This would allow the model to produce the forecast demand given one in 10 year, and one in two year weather conditions. This is obtained by analysing the temperature data since 1990, and picking out the 10th and 50th percentile.

Step 5: Model validation/derivation of initial forecast (excludes any future block loads)

After an appropriate model has been determined, an initial forecast can be derived. At this point, various checks are conducted on the model to ensure that the model is valid and a good fit for historical data. These checks are described below:

- a) Visual check A graph with the historical demands as well as the 50% and 10% PoE forecasts (including back-fit) shows what maximum demand would have been in the past if 50% and 10% PoE weather conditions had occurred instead of the actual temperatures. To some extent, this graph provides a visual confirmation as to whether the model forecast is reasonable.
- b) Statistical model diagnostics are scrutinized to ensure that the model is suited for the data. For e.g. diagnostic checking of residuals, normal Q-Q plots, leverage plots, VIF etc. are used.
- c) A back-fit (goodness of fit) analysis is conducted to check the model's fit for predicting historical demand. Basically, this involves "forecasting" historical demand using the model, given the historical data of the explanatory variables. A graph, as well as a table which shows the % deviation of the back-fit from actual is used to verify the viability of the model.

Step 6: Develop final forecast (factoring in possible future block loads)

After the model has been determined to be a good fit in Step 5, a final forecast can then be developed. This step involves adjusting the initial forecast for expected future block loads.

*Note: ActewAGL currently does not have sufficient data to isolate the effect of historical block customer loads. It is not possible to remove the effect of the embedded historical block loads from the historical trend. An overestimated forecast would therefore result if expected future block loads are simply added on top of the trend. However, it would not be prudent if future block loads are just not accounted for. To minimize the overestimation effect, only the effect of block loads ABOVE the trend is added to the forecast.

In this step, 10% and 50% PoE forecasts are developed. This corresponds to the one in 10 year, and one in two year weather conditions.

Finally, 90% Prediction Intervals (PI) for each of the 10% and 50% PoE forecasts are generated statistically. This provides the user with a band within which he is 90% confident that demand would fall. For example, the 90% PI for the 50% PoE forecasts is the range within which we can be 90% confident that demand will fall given one in two year weather conditions.

Step 6: Produce final graph, forecast numbers and document model used

The final step in the modelling/forecasting process is to produce the final graph and generate the forecast numbers. The model is also documented (e.g. model coefficients), so that it can be easily replicable in the future.

3.5.2 Steps to develop system level forecast

The development of the system level forecast followed a similar method as for the zone level forecasts, with the addition of various econometric/demographic variables. It was established that the only statistically significant variables were weather factors and population.

4. ActewAGL demand forecast

4.1 Forecast excluding effect of future augmentation projects

Table 4.1 and Table 4.2 below show the 10 year forecast (2014-2023) of summer and winter maximum demands for both the 50% PoE and 10%PoE forecast scenarios. Also shown in the tables are the existing continuous and emergency ratings of the ActewAGL zone substations, against which the need for any system augmentation can be tested.

		Zone	Substa	tion Ra	nting, M	IVA																	
Zone S	ubstation	Belconnen		City E	City East			Fyshwick		Gilmore		Gold Creek		Latha	ım	Telopea Park		Theodore		Wanniassa		Wode	n
Season		s	w	s	w	s	w	s	w	s	w	s	w	s	w	s	w	s	w	s	w	s	w
Detien	Continuous	55	55	95	112	110	110	28	28	45	45	57	57	95	100	100	100	45	45	75	100	95	100
Rating	Emergency	63	76	95	114	114	143	28	28	62	69	76	76	95	114	114	114	62	69	95	114	95	114
		Zone S	Substatio	n 50% P	oE Load	Forecas	t, MVA																
Year		s	w	S	w	s	w	S	w	s	w	S	w	S	w	s	w	s	w	s	w	s	w
2014		59.5	56.8	78.7	70.5	60.4	56.0	40.5	34.2	22.2	26.8	49.2	55.6	54.5	70.8	107.8	102.4	29.8	30.4	73.4	80.2	81.7	79.9
2015		61.8	59.1	78.0	70.1	60.5	56.1	41.9	35.1	22.9	27.7	52.3	58.7	55.2	71.0	109.8	103.5	30.6	30.4	74.0	79.3	82.0	79.2
2016		61.8	59.1	77.2	69.7	60.5	56.1	43.3	36.0	23.6	28.6	55.4	61.8	55.9	71.0	110.9	104.7	31.4	30.4	74.6	78.3	82.0	78.2
2017		61.8	59.1	76.3	69.3	60.5	56.1	44.6	36.9	24.3	29.4	58.4	64.9	56.6	71.0	112.0	105.8	32.2	30.4	75.2	77.3	82.0	77.2
2018		61.8	59.1	75.5	68.9	60.5	56.1	46.0	37.8	25.0	30.3	61.5	68.0	57.3	71.0	113.1	106.9	33.0	30.4	75.8	76.3	82.0	76.3
2019		61.8	59.1	74.7	68.5	60.5	56.1	47.4	38.8	25.7	31.2	64.6	71.1	58.0	71.0	114.2	108.1	33.9	30.4	76.4	75.3	82.0	75.3
2020		61.8	59.1	73.9	68.1	60.5	56.1	48.7	39.7	26.4	32.1	67.7	74.2	58.7	71.0	115.3	109.2	34.7	30.4	77.0	74.3	82.0	74.3
2021		61.8	59.1	73.1	67.7	60.5	56.1	50.1	40.6	27.1	33.0	70.8	77.4	59.4	71.0	116.4	110.4	35.5	30.4	77.6	73.3	82.0	73.4
2022		61.8	59.1	72.3	67.3	60.5	56.1	51.5	41.5	27.8	33.8	73.8	80.5	60.1	71.0	117.5	111.5	36.3	30.4	78.2	72.3	82.0	72.4
2023		61.8	59.1	71.5	66.9	60.5	56.1	52.8	42.4	28.5	34.7	76.9	83.6	60.8	71.0	118.6	112.6	37.1	30.4	78.8	71.3	82.0	71.4

Table 4.1: Forecasts for Zone Substations (50% PoE)

Note: The forecasts are based on the historical/current state of the network, i.e. they do not factor in unrealised planned work. For example, the Fyshwick Zone forecast does not account for possible future transfers to East Lake Zone, which could reduce the Fyshwick peak demand. At the time the forecast was developed there was no load connected to East Lake Zone.

Table 4.2: Forecasts for Zone Substations (10% PoE)

		Zone	Substa	tion Ra	ting, N	IVA																	
Zone S	ubstation	Belco	nnen	City E	ast	Civic		Fyshv	vick	Gilmo	ore	Gold	Creek	Latha	m	Telop Park	ea	Theo	dore	Wann	iassa	Wode	n
Season		s	w	s	w	s	w	s	w	s	w	s	w	s	w	s	w	s	w	s	w	s	w
	Continuous	55	55	95	112	110	110	28	28	45	45	57	57	95	100	100	100	45	45	75	100	95	100
Rating	Emergency	63	76	95	114	114	143	28	28	62	69	76	76	95	114	114	114	62	69	95	114	95	114
		Zone S	Substatio	n 50% P	oE Load	Forecas	t, MVA																
Year		s	w	s	w	S	w	S	w	S	w	s	w	S	w	s	w	s	w	s	w	s	w
2014		63.7	57.2	84.1	70.8	62.7	56.5	42.7	34.6	23.1	26.8	52.2	55.7	58.5	71.2	113.1	103.1	31.0	30.6	79.1	80.6	85.4	80.8
2015		66.0	59.5	83.4	70.5	62.7	56.6	44.1	35.5	23.8	27.7	55.3	58.9	59.2	71.4	115.2	104.2	31.8	30.6	79.7	79.6	85.7	80.2
2016		66.0	59.5	82.6	70.1	62.7	56.6	45.4	36.4	24.5	28.6	58.4	62.0	59.9	71.4	116.2	105.4	32.6	30.6	80.3	78.6	85.7	79.2
2017		66.0	59.5	81.7	69.7	62.7	56.6	46.8	37.3	25.2	29.4	61.5	65.1	60.6	71.4	117.3	106.5	33.4	30.6	80.9	77.6	85.7	78.2
2018		66.0	59.5	80.9	69.3	62.7	56.6	48.2	38.2	25.9	30.3	61.4	68.2	61.3	71.4	118.4	107.7	34.3	30.6	81.5	76.6	85.7	77.3
2019		66.0	59.5	80.1	68.9	62.7	56.6	49.6	39.1	26.6	31.2	67.7	71.3	62.0	71.4	119.5	108.8	35.1	30.6	82.1	75.6	85.7	76.3
2020		66.0	59.5	79.3	68.5	62.7	56.6	50.9	40.0	27.3	32.1	70.7	74.4	62.7	71.4	120.6	109.9	35.9	30.6	82.7	74.6	85.7	75.3
2021		66.0	59.5	78.5	68.1	62.7	56.6	52.3	40.9	28.0	33.0	73.8	77.5	63.4	71.4	121.7	111.1	36.7	30.6	83.3	73.7	85.7	74.3
2022		66.0	59.5	77.7	67.7	62.7	56.6	53.7	41.8	28.7	33.8	76.9	80.6	64.1	71.4	122.8	112.2	37.5	30.6	83.9	72.7	85.7	73.4
2023		66.0	59.5	76.9	67.3	62.7	56.6	55.0	42.7	29.4	34.7	80.0	83.7	64.8	71.4	123.9	113.4	38.4	30.6	84.5	71.7	85.7	72.4

Notes:

a) Fyshwick main transformer two hour emergency rating has been downgraded to 28MVA in August 2013. When the cause for this down rating is rectified the original two hour emergency rating will be reinstated and the deficit of capacity and demand will reduce to 6MVA from 28MVA.

b) Residential demand growth in Molonglo valley has not been accounted for load forecasting of zone substations (Woden and Civic). A new zone substation (Molonglo) was proposed to take this demand due to the high rate of land releases predicted in 2011/12 and the foreseen supply quality issues associated with significant demand increases when supplied from Woden and Civic zone substations.

c) S = Summer; W = Winter. Summer refers to the months of December, January and February. Therefore December 2012 would be shown as summer 2013.

d) The forecasts are based on the historical/current state of the network, i.e. they do not factor in unrealised planned work. For example, the Fyshwick Zone forecast does not account for possible future transfers to East Lake Zone, which could reduce the Fyshwick peak demand. At the time the forecast was developed there was no load connected to East Lake Zone.

As stated in the notes to the above tables, the forecasts are based on the historical / current state of the network, as existed prior to December 2013, and therefore do not provide an adequate indication of the optimum timing of future system augmentation projects. This is covered in the following section.

4.2 Forecast taking account of future augmentation projects

Table 4.3 below provides details of the future 10%PoE and 50%PoE summer and winter load forecasts, including any planned new substations or upgrades, and/or configuration of the networks (e.g. permanent interzone load transfers).

These forecasts have been developed using the base forecasts discussed above, and applying known and probable load transfers onto new zone substations, and between existing zone substations, over the period 2014 – 2023. The recent commissioning in December 2013 of East Lake zone substation and the commissioning of Molonglo zone substation by mid-2018 are taken into account.

Zone Substa	ation	Belcon	inen	City E	ast	Civic		Eastla	ke	Fyshwi	ck	Gilmor	e	Gold C	reek	Lathan	n	Molong	lo	Telpea	Park	Theodo	ore	Wannia	issa	Woden	1
Season		s	w	s	w	s	w	s	w	s	w	s	w	s	w	s	w	s	w	s	w	s	w	s	w	s	w
	Continuous	55	55	95	112	110	110	50	50	50	50	45	45	57	57	95	100	25/50	25/50	100	100	45	45	95	100	95	100
Rating	Emergency	63	76	95	114	114	143	0	0	50	50	62	69	76	76	95	114	0	0	114	114	62	69	95	114	95	114
Destaurante	Continuous	87	87					100	100																		
Post upgrade	Emergency																										
Zone substati	on 50%PoE load	forecast,	MVA																								
	2014	55.75	53.05	74.95	66.75	66.03	61.63	8.25	16.50	40.50	25.95	22.20	26.80	49.20	55.60	56.38	72.68	0.00	0.00	99.55	94.15	29.80	30.40	73.40	80.20	81.70	79.9
	2015	60.30	57.60	74.25	66.35	70.63	66.23	16.58	16.67	33.65	26.858	22.90	27.70	50.05	56.45	57.08	72.88	0.00	0.00	101.55	95.25	30.60	30.40	74.00	79.30	77.50	74.7
	2016	60.30	57.60	73.45	65.95	70.63	66.23	16.75	34.08	35.05	18.75	23.60	28.60	53.15	59.55	57.78	72.88	0.00	0.00	102.65	88.20	31.40	30.40	74.60	78.30	77.50	73.7
	2017	60.30	57.60	72.55	65.55	70.63	66.23	34.17	46.12	27.35	7.95	24.30	29.40	56.15	62.65	58.48	72.88	0.00	0.00	95.50	89.30	32.20	30.40	75.20	77.30	77.50	72.7
	2018	60.30	57.60	71.75	65.15	70.63	63.98	46.21	46.58	17.05	8.85	25.00	30.30	59.25	65.75	59.18	72.88	0.00	10.4	96.60	90.40	33.00	30.40	75.80	76.30	77.50	66.′
	2019	60.30	57.60	70.95	64.75	68.38	63.98	46.67	47.05	18.45	9.85	25.70	31.20	62.35	68.85	59.88	72.88	10.4	10.93	97.70	91.60	33.90	30.40	76.40	75.30	71.80	65. ⁻
	2020	60.30	57.60	70.15	64.35	68.38	63.98	47.14	47.52	19.75	10.75	26.40	32.10	65.45	71.95	60.58	72.88	10.93	11.48	98.80	92.70	34.70	30.40	77.00	74.30	71.80	64.′
	2021	60.30	57.60	69.35	63.95	68.38	63.98	47.61	48.00	21.15	11.65	27.10	33.00	68.55	75.15	61.28	72.88	11.48	12.02	99.90	93.90	35.50	30.40	77.60	73.30	71.80	63.2
	2022	60.30	57.60	68.55	63.55	68.38	63.98	48.08	48.48	22.55	12.55	27.80	33.80	71.55	78.25	61.98	72.88	12.02	12.66	101.00	95.00	36.30	30.40	78.20	72.30	71.80	62.2
	2023	60.30	57.60	67.75	63.15	68.38	63.98	48.56	48.96	23.85	13.45	28.50	34.70	74.65	81.35	62.68	72.88	12.62	13.29	102.10	96.10	37.10	30.40	78.80	71.30	71.80	61.2
Zone substati	on 10%PoE load	forecast,	MVA																								
	2014	59.95	53.45	80.35	67.05	68.33	62.13	8.25	16.50	42.70	26.35	23.10	26.80	52.20	55.70	60.38	73.08	0.00	0.00	104.85	94.85	31.00	30.60	79.10	80.60	85.40	80.8
	2015	64.50	58.00	79.65	66.75	72.83	66.73	16.58	16.67	35.85	27.25	23.80	27.70	53.05	56.65	61.08	73.28	0.00	0.00	106.95	95.95	31.80	30.60	79.70	79.60	81.20	75.7
	2016	64.50	58.00	78.85	66.35	72.83	66.73	16.75	34.08	37.15	19.15	24.50	28.60	56.15	59.75	61.78	73.28	0.00	0.00	107.95	88.90	32.60	30.60	80.30	78.60	81.20	74.7
	2017	64.50	58.00	77.95	65.95	72.83	66.73	34.17	46.12	29.55	8.35	25.20	29.40	59.25	62.85	62.48	73.28	0.00	0.00	100.80	90.00	33.40	30.60	80.90	77.60	81.20	73.7
	2018	64.50	58.00	77.15	65.55	72.83	64.48	46.21	46.58	19.25	9.25	25.90	30.30	62.35	65.95	63.18	73.28	0.00	11.2	101.90	91.20	34.30	30.60	81.50	76.60	81.20	67.′
	2019	64.50	58.00	76.35	65.15	70.58	64.48	46.67	47.05	20.65	10.15	26.60	31.20	65.45	69.05	63.88	73.28	11.2	11.76	103.00	92.30	35.10	30.60	82.10	75.60	75.50	66.′
	2020	64.50	58.00	75.55	64.75	70.58	64.48	47.14	47.52	21.95	11.05	27.30	32.10	68.45	72.15	64.58	73.28	11.76	12.34	104.10	93.40	35.90	30.60	82.70	74.60	75.50	65.1
	2021	64.50	58.00	74.75	64.35	70.58	64.48	47.61	48.00	23.35	11.95	28.00	33.00	71.55	75.25	65.28	73.28	12.34	12.96	105.20	94.60	36.70	30.60	83.30	73.70	75.50	64.1
	2022	64.50	58.00	73.95	63.95	70.58	64.48	48.08	48.48	24.75	12.85	28.70	33.80	74.65	78.35	65.98	73.28	12.96	13.61	106.30	95.70	37.50	30.60	83.90	72.70	75.50	63.2
	2023	64.50	58.00	73.15	63.55	70.58	64.48	48.56	48.96	26.05	13.75	29.40	34.70	77.75	81.45	66.68	73.28	13.61	14.29	107.40	96.90	38.40	30.60	84.50	71.70	75.50	62.2

Table 4.3: Forecasts for zone substations after accounting for future augmentation projects

ActewAGL 266 for you

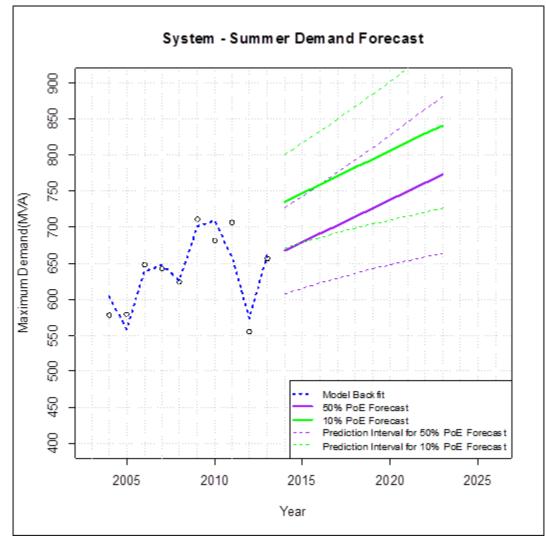
Key points to note about these forecasts are:

- No account has been taken of potential demand reductions from ActewAGL demand management projects
- No account has been taken of available small scale embedded generation
- No account has been taken of the three large PV array projects planned for ActewAGL's supply area.
- Assumed load transfers have been discounted to 75% of estimated amounts.
- Annual load growth rates of 1% and 5% have been assumed for Eastlake and Molonglo zone substations respectively after commissioning.
- Proposed Mitchell zone substation has been excluded from the forecast, as it is well into the next regulatory period, and no system constraint is evident from the forecast to determine appropriate timing.

4.3 Assumed load transfers

The following assumed transfers onto new or uprated zone substations would occur over the period 2014 – 19. Note that all transfers have been discounted to 75% of the estimated values to allow for probable erosion of load transfer capability due to residual load growth on feeders during the intervening period. The figures below are pre-discounted values.

Transfer from:	То:	Load (MVA)	Assumed capacity available	Assumed transfer date
Fyshwick	Eastlake	11	75%	Jul-14
Telopea Park	Eastlake	11	75%	Jan-14
Telopea Park	Eastlake	11	75%	Jul-16
Fyshwick	Eastlake	12	75%	Jul-16
Fyshwick	Eastlake	15.6	75%	Jul-17
Woden	Molonglo	7.6	75%	Jul-18
Civic	Molonglo	3	75%	Jul-18
Belconnen	Civic	2.5	75%	Jan-14
Belconnen	Latham	2.5	75%	Jan-14
City East	Civic	5	75%	Jan-14
Gold Creek	Belconnen	3	75%	Jan-15
Woden	Civic	6	75%	Jan-15


Table 4.4: Estimated Magnitude and Timing of Load Transfers

ActewAGL 200 for you

5. Forecast Outcomes

5.1 System Forecast

5.1.1 System Summer Forecast

Model Details: Demand = -227.1 + 32.51*MaxCDD + 0.0015 * Population

Model Coefficients									
	Estimate	Std. Error	t value	Pr(> t)					
(Intercept)	-227.1	198.5	-1.144	0.29026					
MaxCDD 32.51 6.125 5.308 0.00111									
Population	0.001506	0.0004958	3.037	0.01893					
Residual standard error: 26.	31 on 7 degrees of fi	reedom							
Multiple R-squared: 0.8185, Adjusted R-squared: 0.7666									
F-statistic: 15.78 on 2 and 7 DF, p-value: 0.002548									

ActewAGL 200

Year	System Peak (MVA)	Back-fit using actual temp (MVA)	Deviation of Backfit from actual	Deviation Magnitude
2004	577.4	604.27	5%	5%
2005	579.2	558.37	-4%	4%
2006	648.2	639.18	-1%	1%
2007	642.7	648.14	1%	1%
2008	623.5	625.99	0%	0%
2009	711.2	701.43	-1%	1%
2010	681.5	708.36	4%	4%
2011	707.1	658.72	-7%	7%
2012	555	574.06	3%	3%
2013	656	663.29	1%	1%
		Average	<u>0%</u>	<u>3%</u>

Final Forecast (Incorporating Block Loads)									
Summer ending Feb	50% PoE (in MVA)	10% PoE (in MVA)							
2014	667.1	735.4							
2015	678.9	747.1							
2016	690.9	759.1							
2017	702.6	770.8							
2018	714.3	782.6							
2019	726.1	794.3							
2020	737.8	806.0							
2021	749.5	817.7							
2022	761.1	829.4							
2023	772.7	841.0							

		50% PoE			0% PoE	
Year	Lower Bound	50% PoE	Upper Bound	Lower Bound	10% PoE	Upper Bound
2014	606.9853	667.0997	727.2141	670.4908	735.3664	800.2419
2015	614.8973	678.8538	742.8104	678.0595	747.1205	816.1816
2016	622.3888	690.861	759.3332	685.2824	759.1276	832.9729
2017	629.2212	702.5654	775.9097	691.917	770.8321	849.7472
2018	635.703	714.3196	792.9361	698.2496	782.5863	866.9229
2019	641.8689	726.0602	810.2515	704.3042	794.3269	884.3495
2020	647.7718	737.7767	827.7816	710.1246	806.0434	901.9621
2021	653.4607	749.4736	845.4865	715.7526	817.7403	919.728
2022	658.9556	761.1148	863.274	721.203	829.3815	937.56
2023	664.3016	772.732	881.1623	726.5165	840.9986	955.4807

System - Winter Demand Forecast 800 750 Maximum Demand(MV/A) 200 o Ó 650 ć à õ ۰ċ 009 550 20 Model Back fit 450 50% PoE Forecast 10% PoE Forecast Prediction Interval for 50% PoE Forecast 60 Prediction Interval for 10% PoE Forecast 2005 2010 2015 2020 2025 Year

5.1.2 System Winter Forecast

Model Details: Demand = 469.6 + 13.24*MaxHDD

Model Coefficients				
	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	469.601	58.026	8.093	0.0000402
MaxHDD	13.243	4.376	3.026	0.0164
Residual standard error: 14.1	2 on 8 degrees of fr	reedom		·
Multiple R-squared: 0.5337,	Adjusted R-square	ed: 0.4755		
F-statistic: 9.158 on 1 and 8	DF, p-value: 0.0164	ŀ		

ActewAGL 200

for you

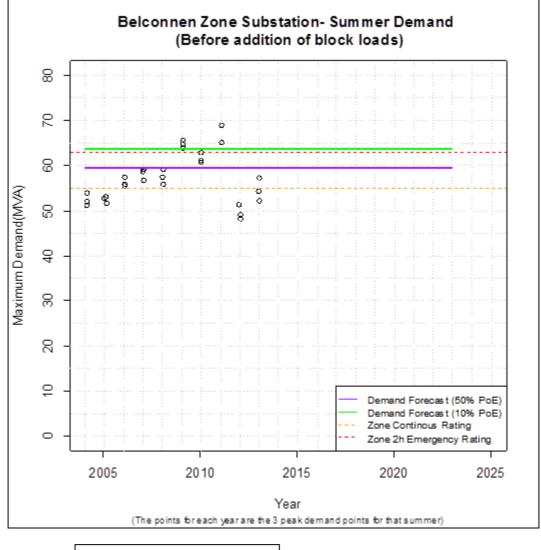
Year	System Peak (MVA)	Back-fit using actual temp (MVA)	Deviation of Backfit from actual	Deviation Magnitude
2004	627.6	654.35	4%	4%
2005	628.5	621.90	-1%	1%
2006	677	661.63	-2%	2%
2007	671	651.04	-3%	3%
2008	636.6	641.10	1%	1%
2009	655.6	661.63	1%	1%
2010	645	644.42	0%	0%
2011	656.3	651.04	-1%	1%
2012	626.3	637.13	2%	2%
2013	622.9	622.56	0%	0%
		Average	<u>0%</u>	<u>1%</u>

Final Fore	Final Forecast (Incorporating Block Loads)					
Summer ending Feb	50% PoE (in MVA)	10% PoE (in MVA)				
2014	643.1	653.8				
2015	643.1	653.8				
2016	643.1	653.8				
2017	643.1	653.8				
2018	643.1	653.8				
2019	643.1	653.8				
2020	643.1	653.8				
2021	643.1	653.8				
2022	643.1	653.8				
2023	643.1	653.8				

Actew/AGL 200

		50% PoE			0% PoE	
Year	Lower Bound	50% PoE	Upper Bound	Lower Bound	10% PoE	Upper Bound
2014	615.5278	643.0908	670.6538	625.6477	653.7518	681.8558
2015	615.5278	643.0908	670.6538	625.6477	653.7518	681.8558
2016	615.5278	643.0908	670.6538	625.6477	653.7518	681.8558
2017	615.5278	643.0908	670.6538	625.6477	653.7518	681.8558
2018	615.5278	643.0908	670.6538	625.6477	653.7518	681.8558
2019	615.5278	643.0908	670.6538	625.6477	653.7518	681.8558
2020	615.5278	643.0908	670.6538	625.6477	653.7518	681.8558
2021	615.5278	643.0908	670.6538	625.6477	653.7518	681.8558
2022	615.5278	643.0908	670.6538	625.6477	653.7518	681.8558
2023	615.5278	643.0908	670.6538	625.6477	653.7518	681.8558

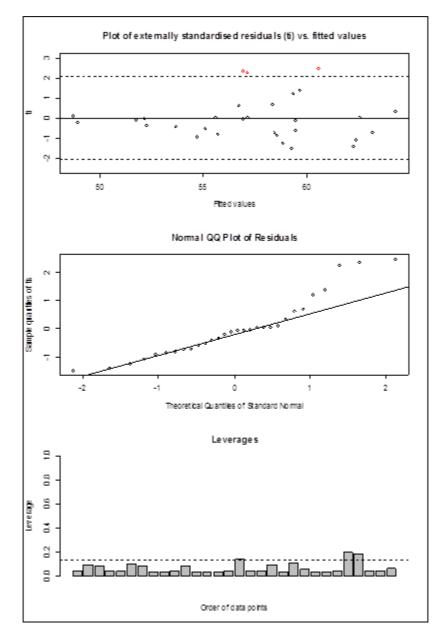
ActewAGL 200 for you

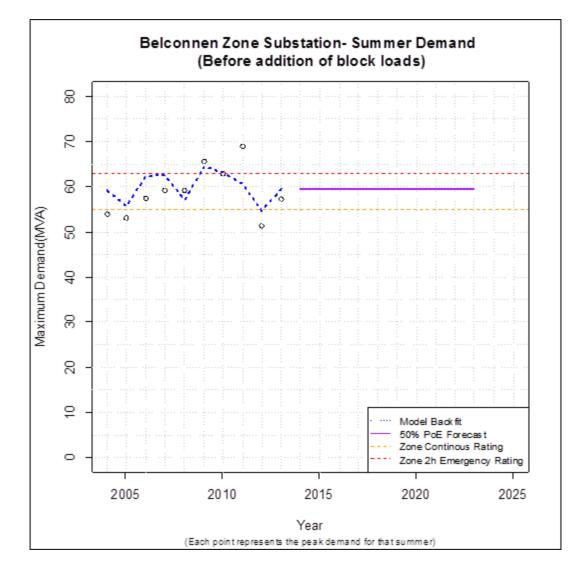

5.2 Belconnen Zone

5.2.1 Belconnen Zone Summer Forecast

Model Selection: Model with variable CDD selected based on stepwise procedures and checking against other statistical criteria.

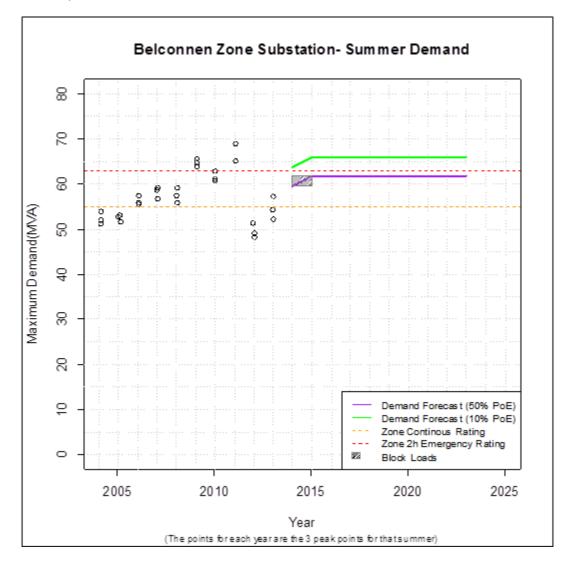
Model/Forecast (before adding block loads):


1) Graph showing historical demand, the 10% and 50% PoE 10-year forecasts, and back-fit showing what historical demand the model would forecast given 10% and 50% PoE weather conditions in the past.



Model Coefficients				
	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	39.5649	3.2346	12.232	9.47E-13
CDD	2.03	0.3608	5.627	0.00000502
Residual standard error: 3.87	19 on 28 degrees of	freedom		
Multiple R-squared: 0.5307,	Adjusted R-squar	ed: 0.5139		
F-statistic: 31.66 on 1 and 28	3 DF, p-value: 5.018	3e-06		

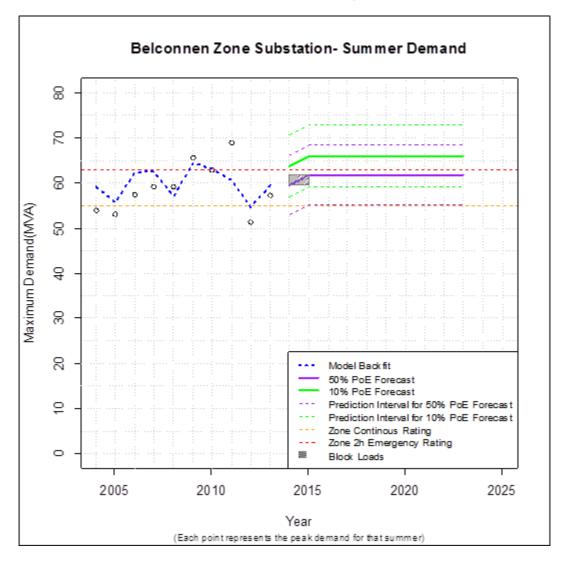
The model is scrutinized to ensure that it is suited for the data. For e.g. diagnostic checking of residuals, normal Q-Q plots, leverage plots, VIF, and a number of other methods are used. Attached below are some diagnostic graphs supporting the model.


2) Graph and statistics assessing the back-fit accuracy of the model. The back-fit forecast is compared to the single highest peak demand point from each year.

Actev/AGL 200 for you

Year	Belconnen Peak (MVA)	Back-fit using actual temp (MVA)	Deviation of Backfit from actual	Deviation Magnitude
2004	53.89	59.26	10%	10%
2005	53.13	55.70	5%	5%
2006	57.34	62.30	9%	9%
2007	59.15	62.40	5%	5%
2008	59.11	57.12	-3%	3%
2009	65.61	64.33	-2%	2%
2010	62.78	63.21	1%	1%
2011	68.99	60.58	-12%	12%
2012	51.27	54.69	7%	7%
2013	57.28	59.46	4%	4%
		Average	<u>2%</u>	<u>6%</u>

Final Model/Forecast (including block loads):


3) Graph and table showing the final forecast (incorporating potential future block loads).

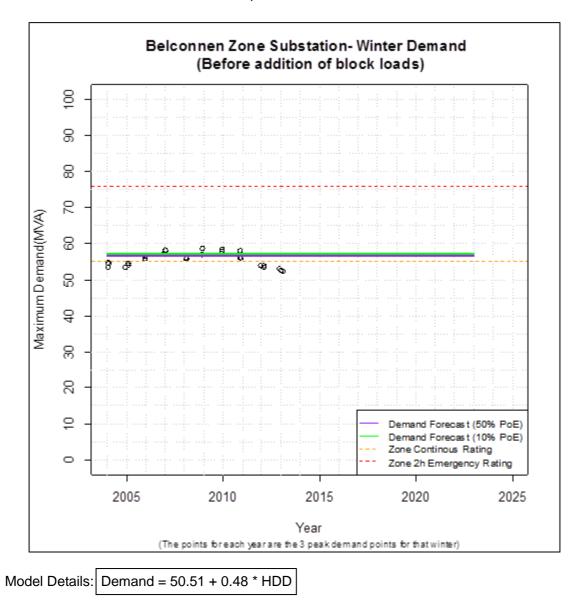
ActewAGL 200 for you

Final Forec	Final Forecast (Incorporating Block Loads)				
Summer ending Feb	50% PoE (in MVA)	10% PoE (in MVA)			
2014	59.5	63.7			
2015	61.8	66.0			
2016	61.8	66.0			
2017	61.8	66.0			
2018	61.8	66.0			
2019	61.8	66.0			
2020	61.8	66.0			
2021	61.8	66.0			
2022	61.8	66.0			
2023	61.8	66.0			

4) Graph used in reports/for presentation (incorporating potential future block loads)

Supporting Document: Block Load Data

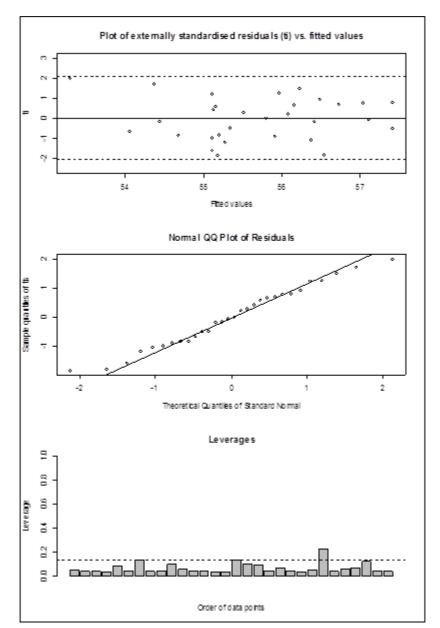
Development type	Supply source feeder	Supply source zone sub	Expected ADMD Increase (MVA)	Supply Required Date	Project probability
Residential & Commercial	Eardley Feeder	Belconnen	-0.06	17/06/2013	100%
Residential Development	Meacham Feeder	Belconnen	0.06	17/09/2013	100%
Commercial Development	Eardley Feeder & Joy Commins Feeder	Belconnen	3	1/01/2015	50%
Residential & Commercial	Cameron North	Belconnen	2	1/02/2015	40%

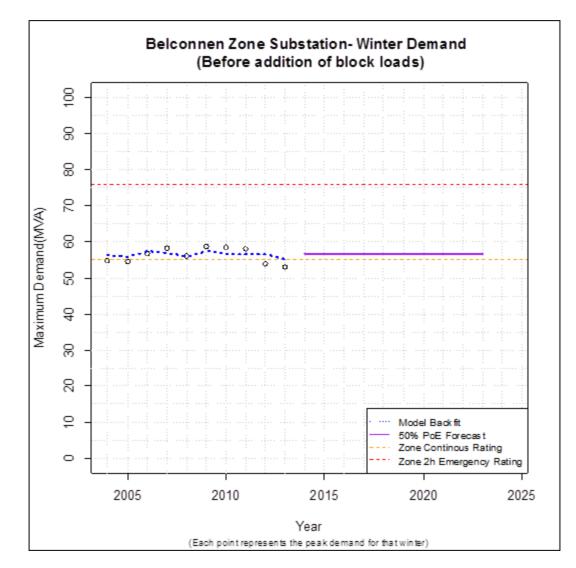

ActewAGL 800 for you

5.2.2 Belconnen Zone Winter Forecast

Model Selection: Model with variable HDD, selected based on stepwise procedures and checking against other statistical criteria.

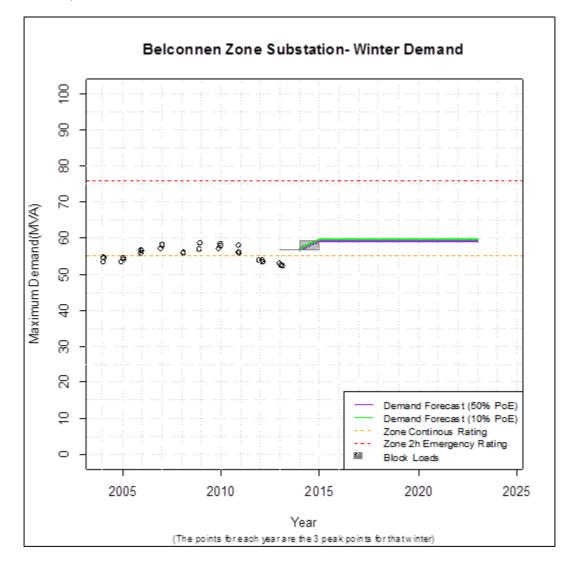
Model/Forecast (before adding block loads):


1) Graph showing historical demand, the 10% and 50% PoE 10-year forecasts, and back-fit showing what historical demand the model would forecast given 10% and 50% PoE weather conditions in the past.



Model Coefficients				
	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	50.5081	1.5982	31.602	< 2e-16
HDD	0.4762	0.1445	3.297	0.00266
Residual standard error: 1.63	88 on 28 degrees of	freedom		
Multiple R-squared: 0.2796, Adjusted R-squared: 0.2539				
F-statistic: 10.87 on 1 and 28 DF, p-value: 0.002663				

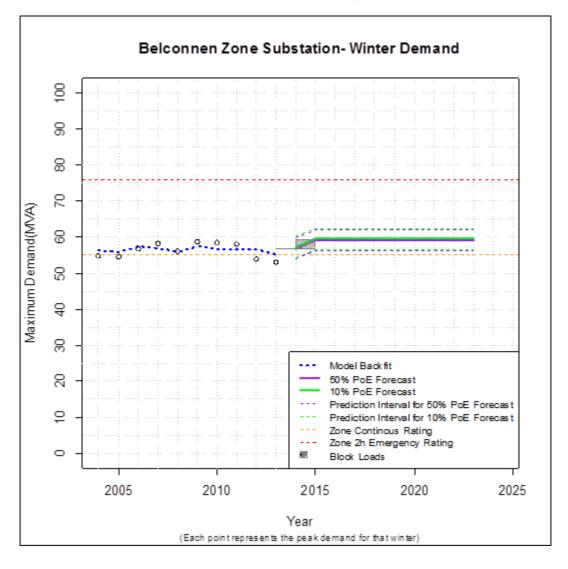
The model is scrutinized to ensure that it is suited for the data. For e.g. diagnostic checking of residuals, normal Q-Q plots, leverage plots, VIF, and a number of other methods are used. Attached below are some diagnostic graphs supporting the model.


2) Graph and statistics assessing the back-fit accuracy of the model. The back-fit forecast is compared to the single highest peak demand point from each year.

Actev/AGL 800 for you

Year	Belconnen Peak (MVA)	Back-fit using actual temp (MVA)	Deviation of Backfit from actual	Deviation Magnitude
2004	54.69	56.37	3%	3%
2005	54.5	55.91	3%	3%
2006	56.65	57.41	1%	1%
2007	58.27	57.03	-2%	2%
2008	56.13	55.79	-1%	1%
2009	58.66	57.41	-2%	2%
2010	58.57	56.72	-3%	3%
2011	57.96	56.41	-3%	3%
2012	53.86	56.53	5%	5%
2013	53.04	55.18	4%	4%
		Average	<u>1%</u>	<u>3%</u>

Final Model/Forecast (including block loads):


3) Graph and table showing the final forecast (incorporating potential future block loads).

ActewAGL 800 for you

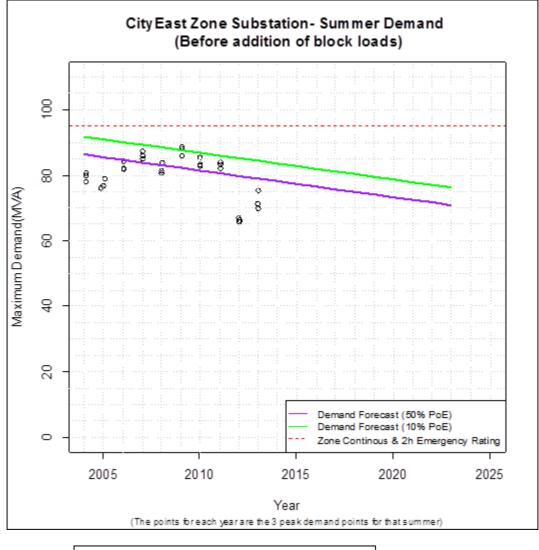
Final Foreca	Final Forecast (Incorporating Block Loads)				
Winter Ending Aug	50% PoE (in MVA)	10% PoE (in MVA)			
2014	56.8	57.2			
2015	59.1	59.5			
2016	59.1	59.5			
2017	59.1	59.5			
2018	59.1	59.5			
2019	59.1	59.5			
2020	59.1	59.5			
2021	59.1	59.5			
2022	59.1	59.5			
2023	59.1	59.5			

4) Graph used in reports/for presentation (incorporating potential future block loads)

Supporting Document: Block Load Data

Development type	Supply source feeder	Supply source zone sub	Expected ADMD Increase (MVA)	Supply Required Date	Project probability
Residential Development	Meacham Feeder	Belconnen	0.06	17/09/2013	100%
Commercial Development	Eardley Feeder & Joy Commins Feeder	Belconnen	3	1/01/2015	50%
Residential & Commercial	Cameron North	Belconnen	2	1/02/2015	40%

ActewAGL 800 for you

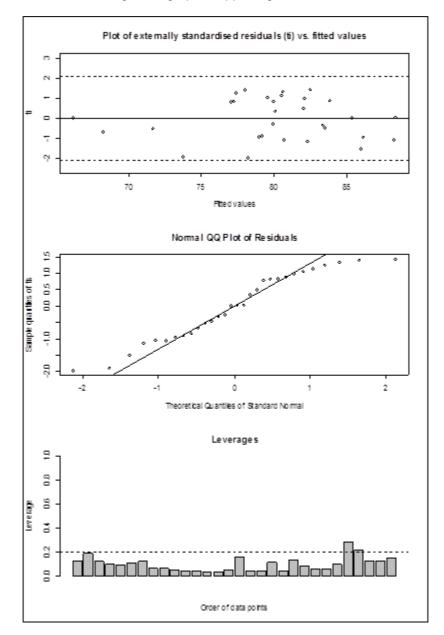

5.3 City East Zone

5.3.1 City East Zone Summer Forecast

Model Selection: Model with variables Year and CDD selected based on stepwise procedures and checking against other statistical criteria.

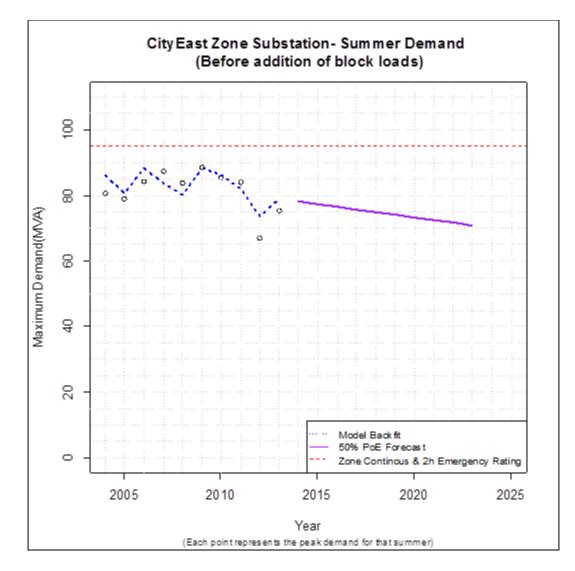
Model/Forecast (before adding block loads):

1) Graph showing historical demand, the 10% and 50% PoE 10-year forecasts, and back-fit showing what historical demand the model would forecast given 10% and 50% PoE weather conditions in the past.


Model Details: Demand = 1691.78 - 0.81 * Year + 2.57 * CDD

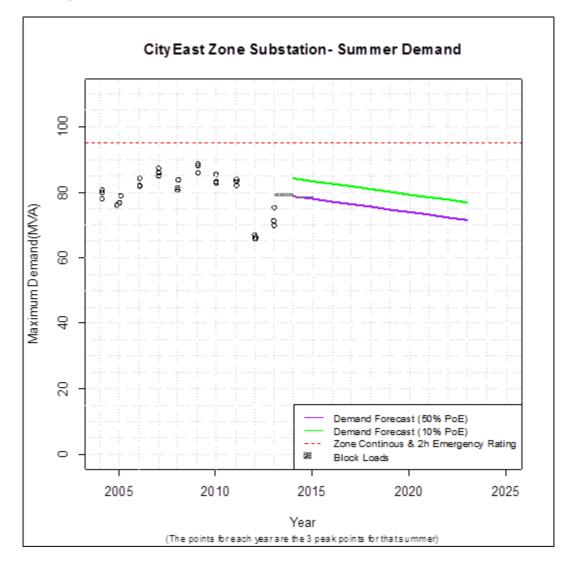
Model Coefficients							
	Estimate	Std. Error	t value	Pr(> t)			
(Intercept)	1691.7755	510.9408	3.311	0.00265			
Year	-0.8137	0.2543	-3.199	0.0035			
CDD	2.5706	0.4226	6.082	1.70E-06			
Residual standard error: 4 on 27 degrees of freedom							
Multiple R-squared: 0.6417, Adjusted R-squared: 0.6152							
F-statistic: 24.18 on 2 and 27 DF, p-value: 9.594e-07							

ActewAGL 200


for you

The model is scrutinized to ensure that it is suited for the data. For e.g. diagnostic checking of residuals, normal Q-Q plots, leverage plots, VIF, and a number of other methods are used. Attached below are some diagnostic graphs supporting the model.

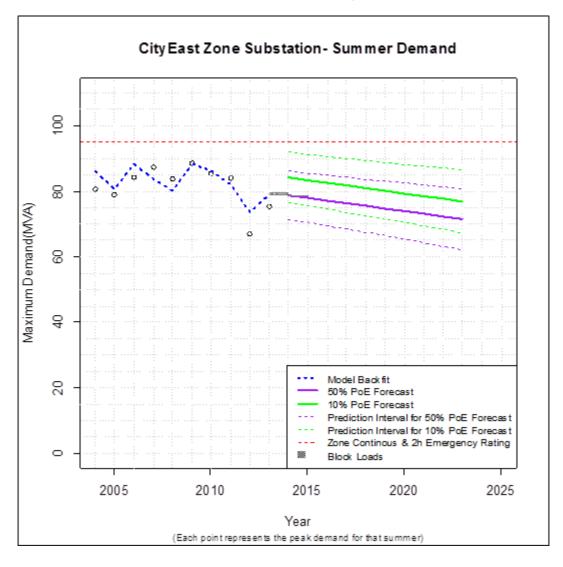
34


2) Graph and statistics assessing the back-fit accuracy of the model. The back-fit forecast is compared to the single highest peak demand point from each year.

ActewAGL 800

Year	City East Peak (MVA)	Back-fit using actual temp (MVA)	Deviation of Backfit from actual	Deviation Magnitude
2004	80.56	86.04	7%	7%
2005	78.92	80.73	2%	2%
2006	84.35	88.27	5%	5%
2007	87.35	83.85	-4%	4%
2008	83.7	80.08	-4%	4%
2009	88.55	88.40	0%	0%
2010	85.51	86.17	1%	1%
2011	83.99	82.01	-2%	2%
2012	66.9	73.74	10%	10%
2013	75.48	78.97	5%	5%
		Average	2%	<u>4%</u>

Final Model/Forecast (including block loads):


3) Graph and table showing the final forecast (incorporating potential future block loads).

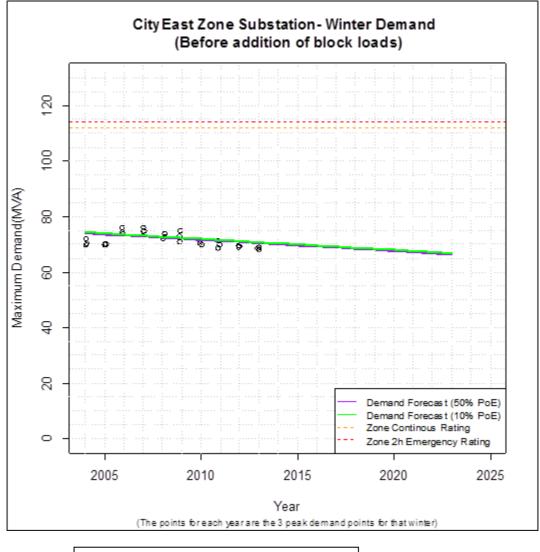
ActewAGL 800 for you

Final Forecast (Incorporating Block Loads)					
Summer ending Feb	50% PoE (in MVA)	10% PoE (in MVA)			
2014	78.7	84.1			
2015	78.0	83.4			
2016	77.2	82.6			
2017	76.3	81.7			
2018	75.5	80.9			
2019	74.7	80.1			
2020	73.9	79.3			
2021	73.1	78.5			
2022	72.3	77.7			
2023	71.5	76.9			

4) Graph used in reports/for presentation (incorporating potential future block loads)

Supporting Document: Block Load Data

Development type	Supply source feeder	Supply source zone sub	Expected ADMD Increase (MVA)	Supply Required Date	Project probability
Commercial Development	Lonsdale Feeder	CityEast	0.1	13/06/2013	100%
Residential & Commercial	Wolseley Feeder	CityEast	0.5	12/12/2013	90%
Community development	Chisholm Feeder	CityEast	0.125	1/02/2014	10%
Residential Development	Wakefield Feeder	CityEast	0.07	1/01/2015	90%

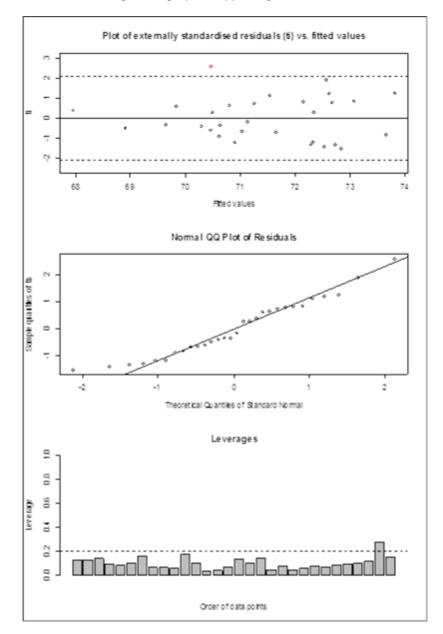

ActewAGL 200 for you

5.3.2 City East Zone Winter Forecast

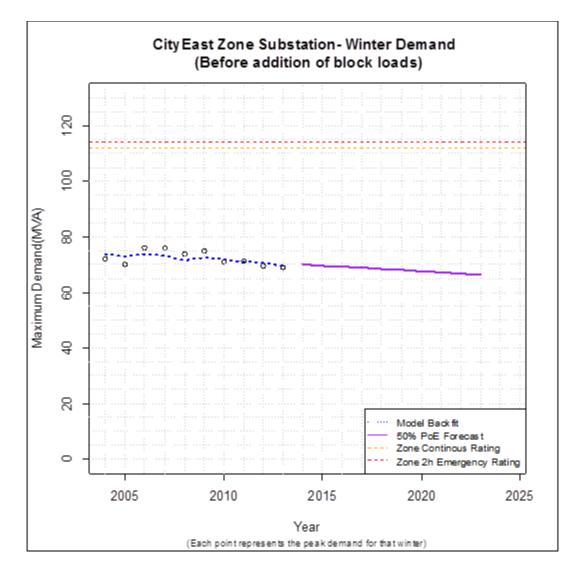
Model Selection: Model with variable HDD, selected based on stepwise procedures and checking against other statistical criteria.

Model/Forecast (before adding block loads):

1) Graph showing historical demand, the 10% and 50% PoE 10-year forecasts, and back-fit showing what historical demand the model would forecast given 10% and 50% PoE weather conditions in the past.

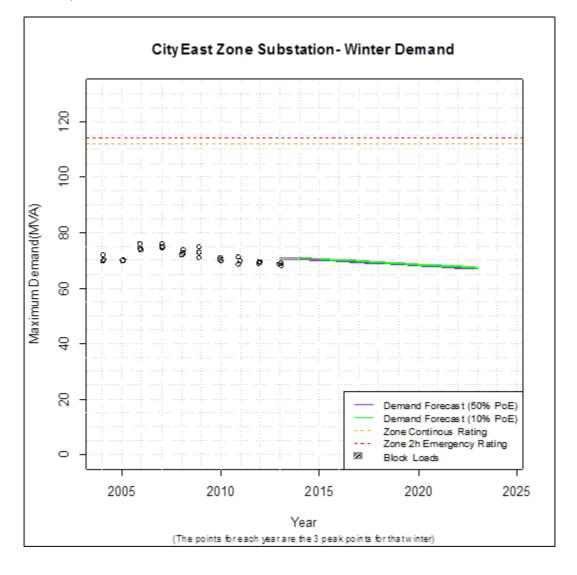

Model Details: Demand = 869.77 - 0.40 * Year + 0.43 HDD

Model Coefficients							
	Estimate	Std. Error	t value	Pr(> t)			
(Intercept)	869.7652	259.1582	3.356	0.00236			
Year	-0.3999	0.1291	-3.098	0.00451			
HDD	0.4338	0.2045	2.121	0.04324			
Residual standard error: 2.02	Residual standard error: 2.029 on 27 degrees of freedom						
Multiple R-squared: 0.3344, Adjusted R-squared: 0.285							
F-statistic: 6.781 on 2 and 27 DF, p-value: 0.00411							


ActewAGL 200

for you

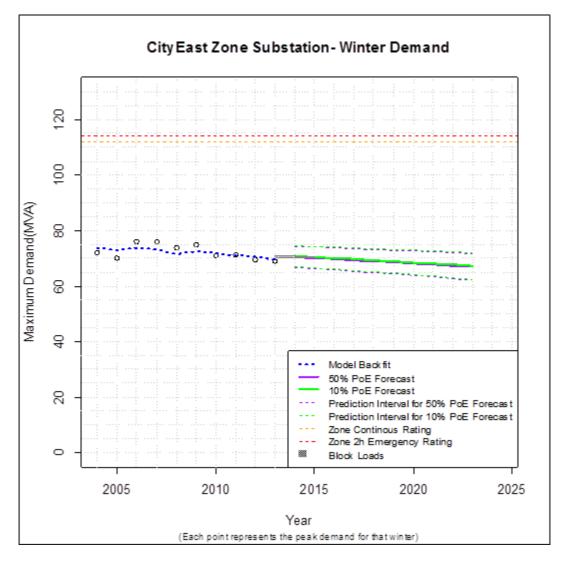
The model is scrutinized to ensure that it is suited for the data. For e.g. diagnostic checking of residuals, normal Q-Q plots, leverage plots, VIF, and a number of other methods are used. Attached below are some diagnostic graphs supporting the model.


2) Graph and statistics assessing the back-fit accuracy of the model. The back-fit forecast is compared to the single highest peak demand point from each year.

Actev/AGL 200 for you

Year	City East Peak (MVA)	Back-fit using actual temp (MVA)	Deviation of Backfit from actual	Deviation Magnitude
2004	72.07	73.66	2%	2%
2005	70.1	72.84	4%	4%
2006	76.12	73.81	-3%	3%
2007	76.15	73.06	-4%	4%
2008	73.79	71.54	-3%	3%
2009	74.88	72.61	-3%	3%
2010	70.83	71.65	1%	1%
2011	71.07	71.03	0%	0%
2012	69.51	70.61	2%	2%
2013	68.97	69.65	1%	1%
		Average	0%	<u>2%</u>

Final Model/Forecast (including block loads):


3) Graph and table showing the final forecast (incorporating potential future block loads).

ActewAGL 200 for you

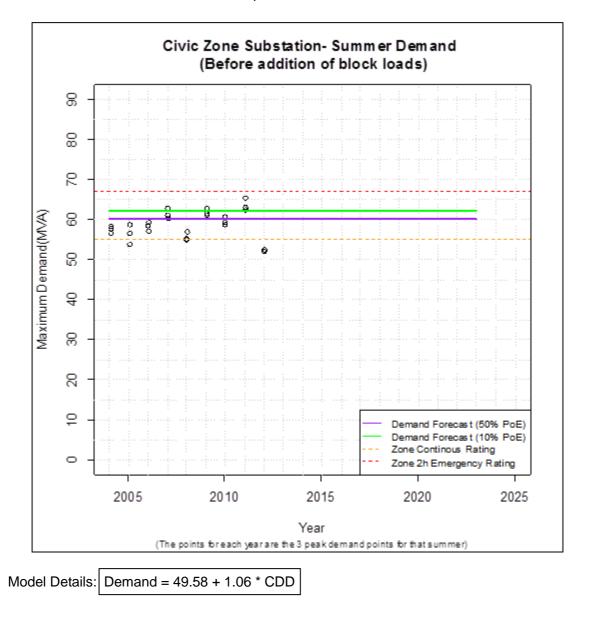
Final Forec	Final Forecast (Incorporating Block Loads)					
Winter Ending Aug	50% PoE (in MVA)	10% PoE (in MVA)				
2014	70.5	70.8				
2015	70.1	70.5				
2016	69.7	70.1				
2017	69.3	69.7				
2018	68.9	69.3				
2019	68.5	68.9				
2020	68.1	68.5				
2021	67.7	68.1				
2022	67.3	67.7				
2023	66.9	67.3				

4) Graph used in reports/for presentation (incorporating potential future block loads)

Supporting Document: Block Load Data

Development type	Supply source feeder	Supply source zone sub	Expected ADMD Increase (MVA)	Supply Required Date	Project probability
Residential & Commercial	Wolseley Feeder	CityEast	0.5	12/12/2013	90%
Community development	Chisholm Feeder	CityEast	0.125	1/02/2014	10%
Residential Development	Wakefield Feeder	CityEast	0.07	1/01/2015	90%

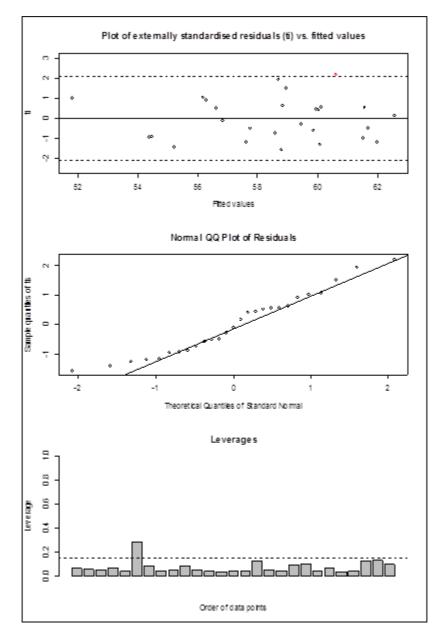
ActewAGL 200 for you

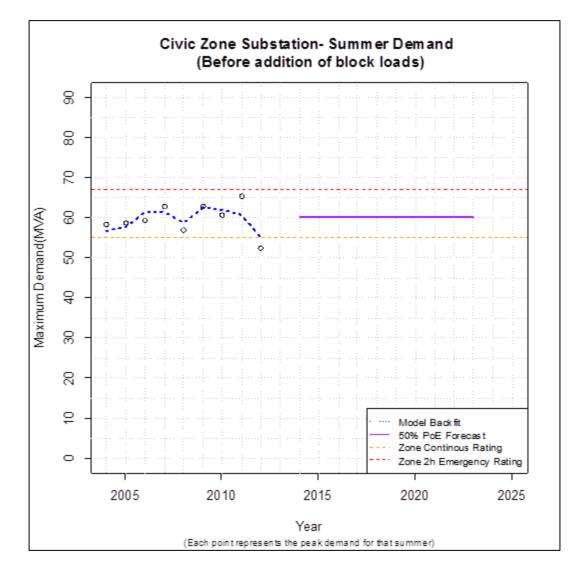

5.4 Civic Zone

5.4.1 Civic Zone Summer Forecast

Model Selection: Model with variable CDD selected based on stepwise procedures and checking against other statistical criteria. Note: Civic Zone is missing 2013 data due to some work on the transformers being completed. The forecast is based on 2004-2012.

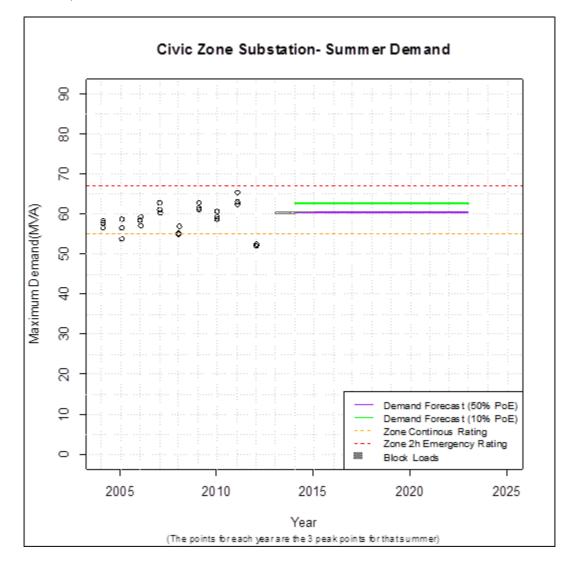
Model/Forecast (before adding block loads):


1) Graph showing historical demand, the 10% and 50% PoE 10-year forecasts, and back-fit showing what historical demand the model would forecast given 10% and 50% PoE weather conditions in the past.



Model Coefficients						
	Estimate	Std. Error	t value	Pr(> t)		
(Intercept)	49.5842	1.6493	30.064	< 2e-16		
CDD	1.0637	0.1885	5.643	0.00000713		
Residual standard error: 2.381 on 25 degrees of freedom						
Multiple R-squared: 0.5602, Adjusted R-squared: 0.5426						
F-statistic: 31.85 on 1 and 25 DF, p-value: 7.13e-06						

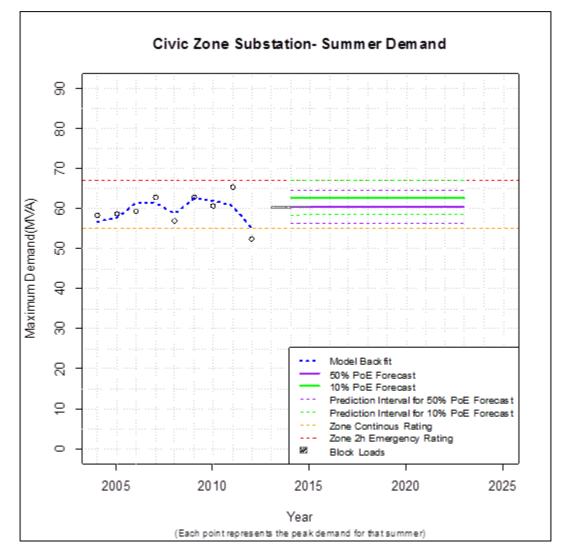
The model is scrutinized to ensure that it is suited for the data. For e.g. diagnostic checking of residuals, normal Q-Q plots, leverage plots, VIF, and a number of other methods are used. Attached below are some diagnostic graphs supporting the model.


2) Graph and statistics assessing the back-fit accuracy of the model. The back-fit forecast is compared to the single highest peak demand point from each year.

ActewAGL 800

Year	Civic Peak (MVA)	Back-fit using actual temp (MVA)	Deviation of Backfit from actual	Deviation Magnitude
2004	58.42	56.82	-3%	3%
2005	58.62	57.72	-2%	2%
2006	59.33	61.50	4%	4%
2007	62.85	61.55	-2%	2%
2008	56.88	58.79	3%	3%
2009	62.93	62.56	-1%	1%
2010	60.59	61.98	2%	2%
2011	65.33	60.59	-7%	7%
2012	52.52	55.22	5%	5%
2013	NA	NA	NA	NA
		Average	<u>0%</u>	<u>3%</u>

Final Model/Forecast (including block loads):


3) Graph and table showing the final forecast (incorporating potential future block loads).

Actew/AGL	200
f	or you

Final Forecast (Incorporating Block Loads)					
Summer ending Feb	50% PoE (in MVA)	10% PoE (in MVA)			
2014	60.4	62.7			
2015	60.5	62.7			
2016	60.5	62.7			
2017	60.5	62.7			
2018	60.5	62.7			
2019	60.5	62.7			
2020	60.5	62.7			
2021	60.5	62.7			
2022	60.5	62.7			
2023	60.5	62.7			

4) Graph used in reports/for presentation (incorporating potential future block loads)

Supporting Document: Block Load Data

Development type	Supply source feeder	Supply source zone sub	Expected ADMD Increase (MVA)	Supply Required Date	Project probability
Commercial	Dryandra Feeder	Civic	0.18	14/08/2013	100%
Residential & Commercial	Wattle Feeder	Civic	0.246	16/09/2013	100%
Residential Development	Wattle Feeder	Civic	0.07	1/01/2015	90%

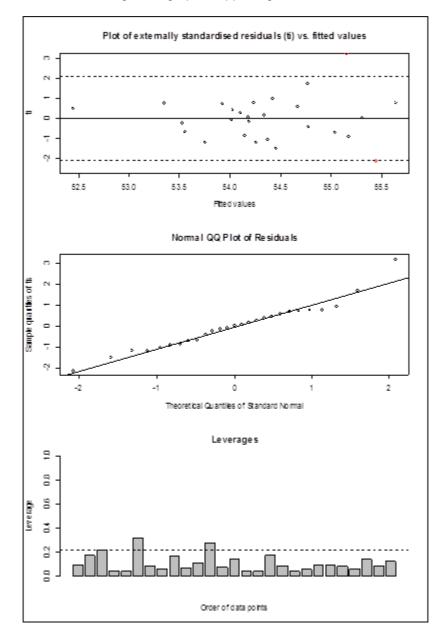
ActewAGL 200 for you

5.4.2 Civic Zone Winter Forecast

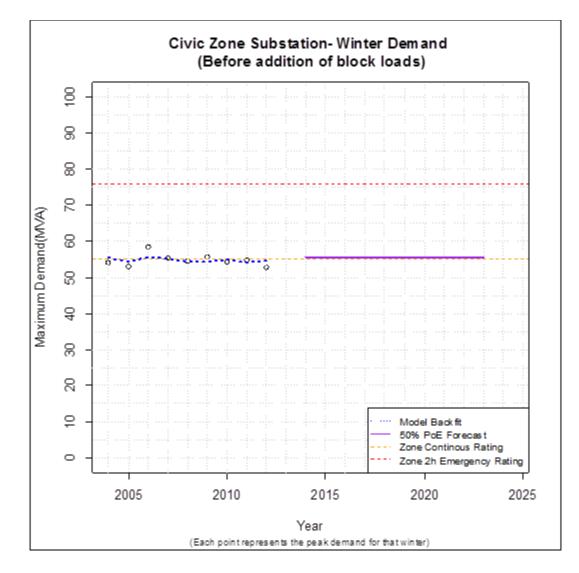
Model Selection: Model with variables MinTemp and 3DayHDD, selected based on stepwise procedures and checking against other statistical criteria. Note: Civic Zone is missing 2013 data due to some work on the transformers being completed. The forecast is based on 2004-2012.

Model/Forecast (before adding block loads):

1) Graph showing historical demand, the 10% and 50% PoE 10-year forecasts, and back-fit showing what historical demand the model would forecast given 10% and 50% PoE weather conditions in the past.

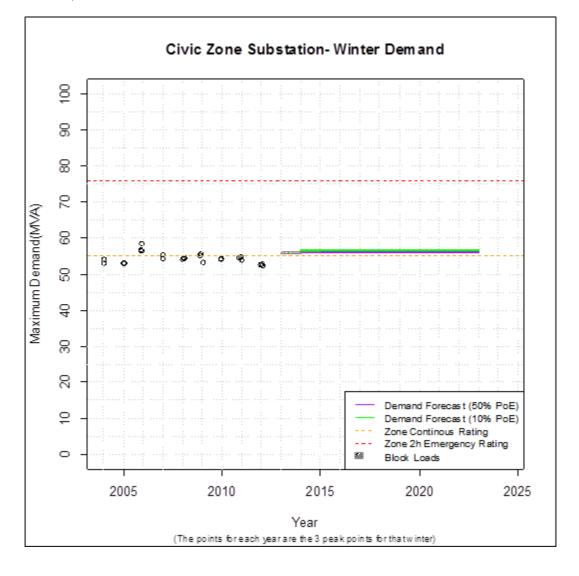

Model Details: Demand = 50.18 - 0.21 * MinTemp + 0.11 * 3DayHDD

Model Coefficients						
	Estimate	Std. Error	t value	Pr(> t)		
(Intercept)	50.17919	1.58715	31.616	<2e-16		
MinTemp	-0.21439	0.1158	-1.851	0.0765		
3DayHDD	0.11473	0.04895	2.344	0.0277		
Residual standard error: 1.28	Residual standard error: 1.287 on 24 degrees of freedom					
Multiple R-squared: 0.2458, Adjusted R-squared: 0.1829						
F-statistic: 3.911 on 2 and 24 DF, p-value: 0.03387						


Actew/AGL 200

for you

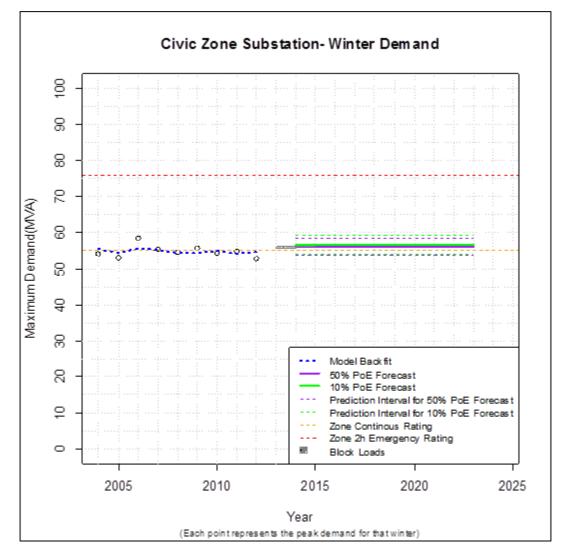
The model is scrutinized to ensure that it is suited for the data. For e.g. diagnostic checking of residuals, normal Q-Q plots, leverage plots, VIF, and a number of other methods are used. Attached below are some diagnostic graphs supporting the model.


2) Graph and statistics assessing the back-fit accuracy of the model. The back-fit forecast is compared to the single highest peak demand point from each year.

ActewAGL 866

Year	Civic Peak (MVA)	Back-fit using actual temp (MVA)	Deviation of Backfit from actual	Deviation Magnitude
2004	54.08	55.44	3%	3%
2005	53.08	54.37	2%	2%
2006	58.51	55.64	-5%	5%
2007	55.42	55.31	0%	0%
2008	54.57	54.34	0%	0%
2009	55.65	54.42	-2%	2%
2010	54.27	55.04	1%	1%
2011	54.84	54.02	-1%	1%
2012	52.78	54.45	3%	3%
2013	NA	NA	NA	NA
		Average	<u>0%</u>	<u>2%</u>

Final Model/Forecast (including block loads):


3) Graph and table showing the final forecast (incorporating potential future block loads).

Actew/AGL	200
f	or you

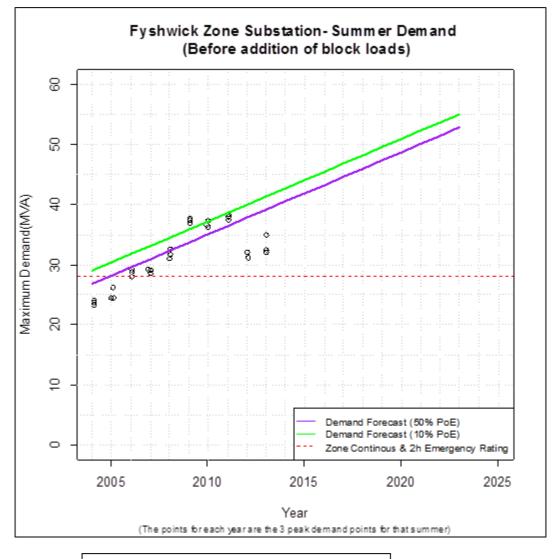
Final Forecast (Incorporating Block Loads)				
Winter Ending Aug	50% PoE (in MVA)	10% PoE (in MVA)		
2014	56.0	56.5		
2015	56.1	56.6		
2016	56.1	56.6		
2017	56.1	56.6		
2018	56.1	56.6		
2019	56.1	56.6		
2020	56.1	56.6		
2021	56.1	56.6		
2022	56.1	56.6		
2023	56.1	56.6		

4) Graph used in reports/for presentation (incorporating potential future block loads)

Supporting Document: Block Load Data

Development type	Supply source feeder	Supply source zone sub	Expected ADMD Increase (MVA)	Supply Required Date	Project probability
Commercial	Dryandra Feeder	Civic	0.18	14/08/2013	100%
Residential & Commercial	Wattle Feeder	Civic	0.246	16/09/2013	100%
Residential Development	Wattle Feeder	Civic	0.07	1/01/2015	90%

ActewAGL 200 for you

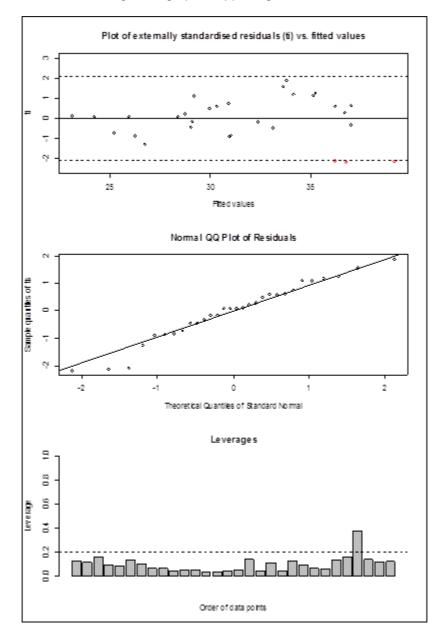

5.5 Fyshwick Zone

5.5.1 Fyshwick Zone Summer Forecast

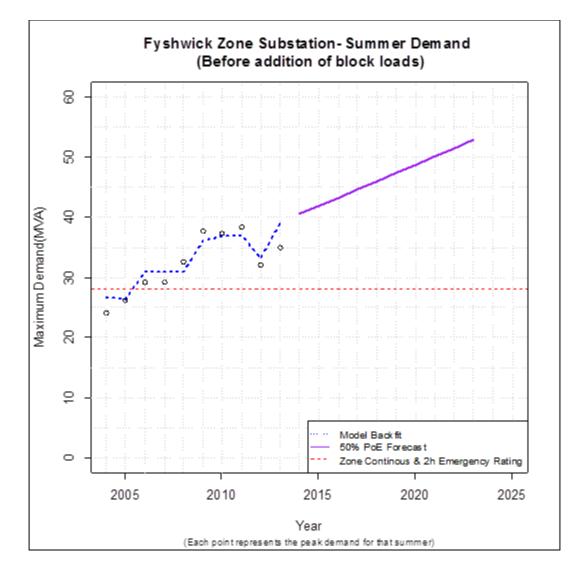
Model Selection: Model with variables Year and CDD selected based on stepwise procedures and checking against other statistical criteria. Note: permanent switching configurations have been accounted for in this Fyshwick forecast.

Model/Forecast (before adding block loads):

1) Graph showing historical demand, the 10% and 50% PoE 10-year forecasts, and back-fit showing what historical demand the model would forecast given 10% and 50% PoE weather conditions in the past.

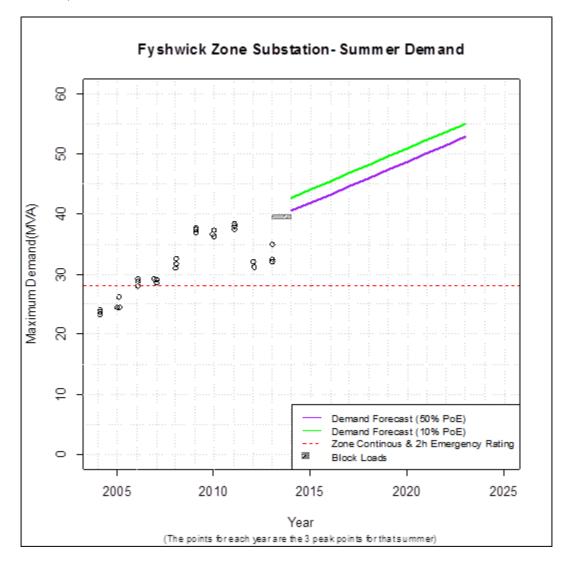

Model Details: Demand = -2726.73 + 1.37 * Year + 1.04 * CDD

Model Coefficients						
	Estimate	Std. Error	t value	Pr(> t)		
(Intercept)	-2726.7272	287.5877	-9.481	4.4E-10		
Year	1.3689	0.1431	9.568	3.63E-10		
CDD	1.0427	0.1871	5.572	6.58E-06		
Residual standard error: 2.229 on 27 degrees of freedom						
Multiple R-squared: 0.8027, Adjusted R-squared: 0.788						
F-statistic: 54.91 on 2 and 27 DF, p-value: 3.059e-10						


ActewAGL 200

for you

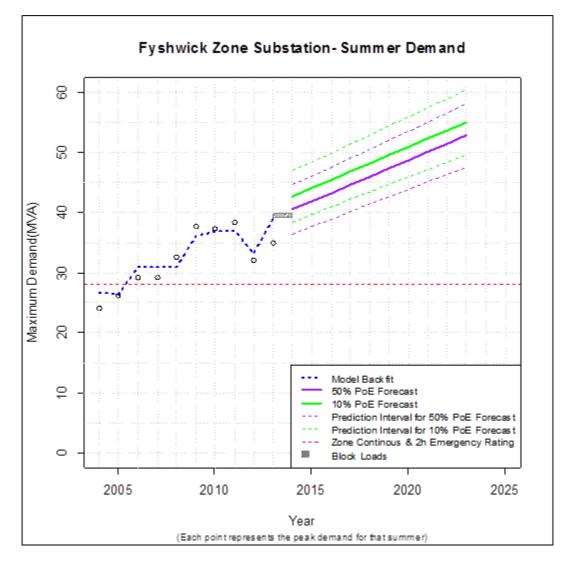
The model is scrutinized to ensure that it is suited for the data. For e.g. diagnostic checking of residuals, normal Q-Q plots, leverage plots, VIF, and a number of other methods are used. Attached below are some diagnostic graphs supporting the model.


2) Graph and statistics assessing the back-fit accuracy of the model. The back-fit forecast is compared to the single highest peak demand point from each year.

ActevrAGL 800 for you

Year	Fyshwick Peak (MVA)	Back-fit using actual temp (MVA)	Deviation of Backfit from actual	Deviation Magnitude
2004	24.12	26.73	11%	11%
2005	26.17	26.27	0%	0%
2006	29.24	31.03	6%	6%
2007	29.23	30.94	6%	6%
2008	32.55	30.90	-5%	5%
2009	37.69	36.18	-4%	4%
2010	37.29	36.97	-1%	1%
2011	38.35	36.99	-4%	4%
2012	32.13	33.09	3%	3%
2013	34.99	39.15	12%	12%
		Average	<u>2%</u>	<u>5%</u>

Final Model/Forecast (including block loads):


3) Graph and table showing the final forecast (incorporating potential future block loads).

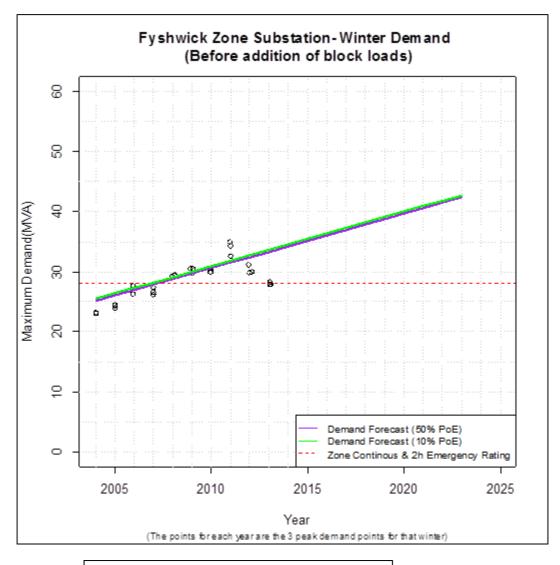
Actew/AGL	200
f	or you

Final Forecast (Incorporating Block Loads)					
Summer ending Feb	50% PoE (in MVA)	10% PoE (in MVA)			
2014	40.5	42.7			
2015	41.9	44.1			
2016	43.3	45.4			
2017	44.6	46.8			
2018	46.0	48.2			
2019	47.4	49.6			
2020	48.7	50.9			
2021	50.1	52.3			
2022	51.5	53.7			
2023	52.8	55.0			

4) Graph used in reports/for presentation (incorporating potential future block loads)

Supporting Document: Block Load Data

Development type	Supply source feeder	Supply source zone sub	Expected ADMD Increase (MVA)	Supply Required Date	Project probability
Commercial & industrial	Collie Feeder	Fyshwick	0.05	20/02/2013	100%
Commercial	Abattoir Feeder	Fyshwick	0.086	20/03/2013	100%
Residential Development	Newcastle Feeder	Fyshwick	0.2	5/04/2013	100%
Commercial	Domayne Feeder	Fyshwick	0.075	6/05/2013	100%
Commercial Development	Abattoir Feeder	Fyshwick	0.225	16/08/2013	100%
Commercial	Barrier Feeder	Fyshwick	0.063	12/12/2013	90%

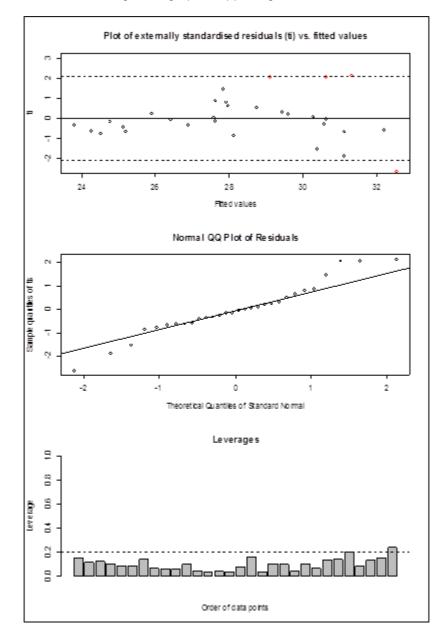


5.5.2 Fyshwick Zone Winter Forecast

Model Selection: Model with variables Year and HDD, selected based on stepwise procedures and checking against other statistical criteria. Note: permanent switching configurations have been accounted for in this Fyshwick forecast.

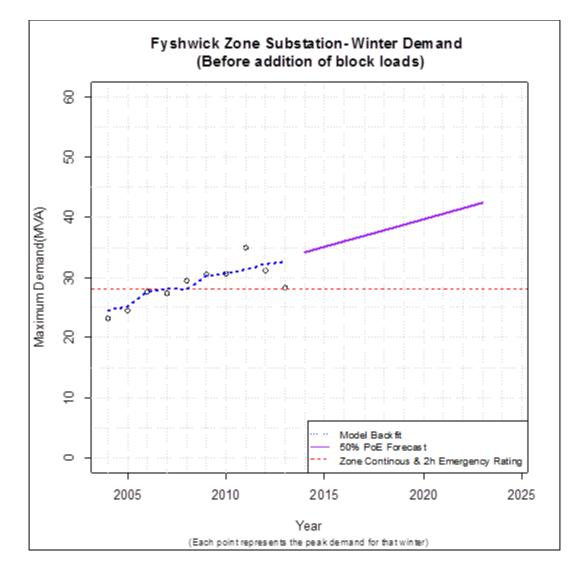
Model/Forecast (before adding block loads):

1) Graph showing historical demand, the 10% and 50% PoE 10-year forecasts, and back-fit showing what historical demand the model would forecast given 10% and 50% PoE weather conditions in the past.


Model Details: Demand = -1798.27 + 0.91 * Year + 0.44 * HDD

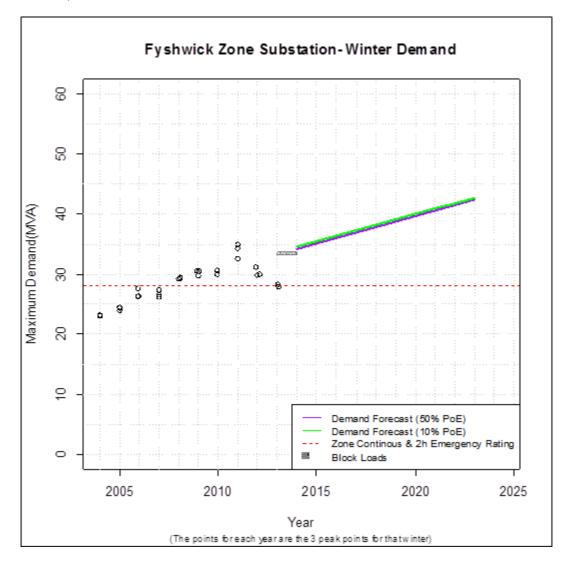
	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	-1798.2733	260.7193	-6.897	0.00000207
Year	0.907	0.1295	7.005	0.000000157
HDD	0.4353	0.1869	2.33	0.0276
Residual standard er	or: 1.93 on 27 degrees o	of freedom		
Multiple R-squared: 0	.6451, Adjusted R-squ	uared: 0.6188		
F-statistic: 24.54 on 2	and 27 DF, p-value: 8.4	432e-07		

ActewAGL 860


for you

The model is scrutinized to ensure that it is suited for the data. For e.g. diagnostic checking of residuals, normal Q-Q plots, leverage plots, VIF, and a number of other methods are used. Attached below are some diagnostic graphs supporting the model.

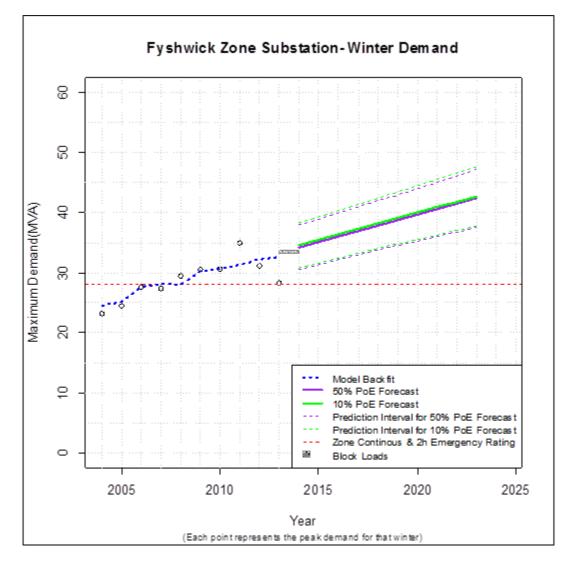
64


2) Graph and statistics assessing the back-fit accuracy of the model. The back-fit forecast is compared to the single highest peak demand point from each year.

Actev/AGL 800 for you

Year	Fyshwick Peak (MVA)	Back-fit using actual temp (MVA)	Deviation of Backfit from actual	Deviation Magnitude
2004	23.2	24.51	6%	6%
2005	24.48	25.20	3%	3%
2006	27.68	27.57	0%	0%
2007	27.37	28.13	3%	3%
2008	29.46	27.97	-5%	5%
2009	30.49	30.29	-1%	1%
2010	30.62	30.63	0%	0%
2011	34.98	31.32	-10%	10%
2012	31.14	32.21	3%	3%
2013	28.29	32.55	15%	15%
		Average	<u>1%</u>	<u>5%</u>

Final Model/Forecast (including block loads):


3) Graph and table showing the final forecast (incorporating potential future block loads).

Actew/AGL	200
f	or you

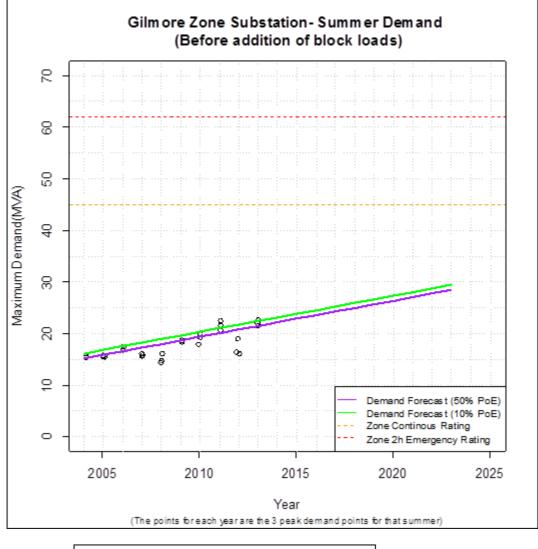
Final Forecast (Incorporating Block Loads)			
Winter Ending Aug	50% PoE (in MVA)	10% PoE (in MVA)	
2014	34.2	34.6	
2015	35.1	35.5	
2016	36.0	36.4	
2017	36.9	37.3	
2018	37.8	38.2	
2019	38.8	39.1	
2020	39.7	40.0	
2021	40.6	40.9	
2022	41.5	41.8	
2023	42.4	42.7	

4) Graph used in reports/for presentation (incorporating potential future block loads)

Supporting Document: Block Load Data

Development type	Supply source feeder	Supply source zone sub	Expected ADMD Increase (MVA)	Supply Required Date	Project probability
Commercial Development	Abattoir Feeder	Fyshwick	0.225	16/08/2013	100%
Commercial	Barrier Feeder	Fyshwick	0.063	12/12/2013	90%

ActewAGL 200 for you

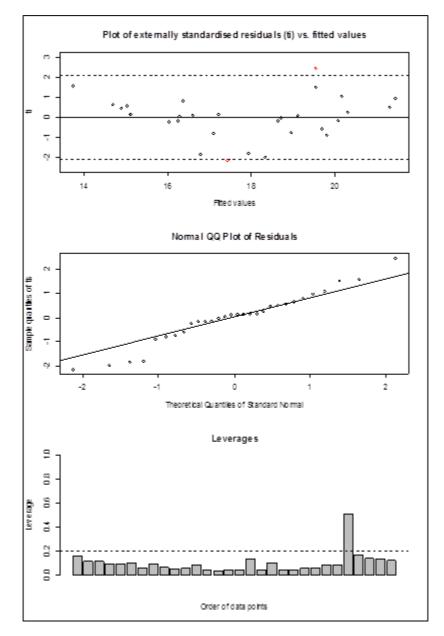

5.6 Gilmore Zone

5.6.1 Gilmore Zone Summer Forecast

Model Selection: Model with variables Year and CDD selected based on stepwise procedures and checking against other statistical criteria.

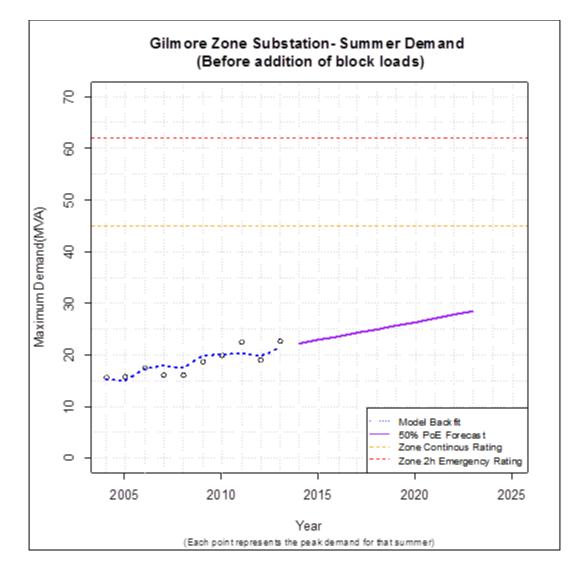
Model/Forecast (before adding block loads):

1) Graph showing historical demand, the 10% and 50% PoE 10-year forecasts, and back-fit showing what historical demand the model would forecast given 10% and 50% PoE weather conditions in the past.


Model Details: Demand = -1391 + 0.70 * Year + 0.46 * CDD

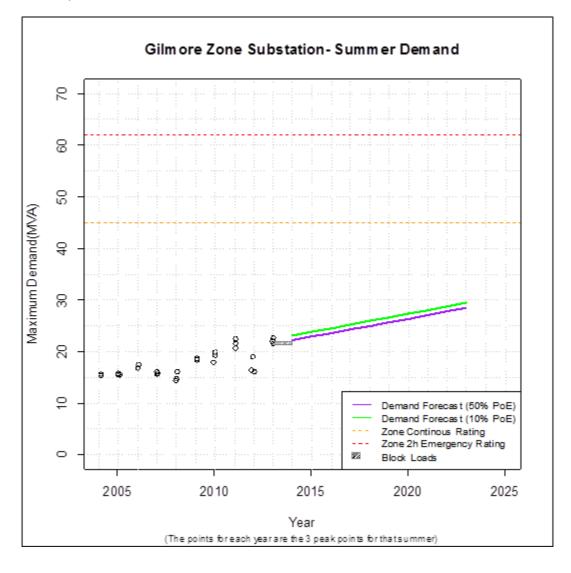
Model Coefficients				
	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	-1391	178.6	-7.789	2.24E-08
Year	0.6997	0.08886	7.874	1.82E-08
CDD	0.4576	0.112	4.087	3.51E-04
Residual standard e	rror: 1.377 on 27 degree	s of freedom		•
Multiple R-squared:	0.7205, Adjusted R-so	quared: 0.6998		
F-statistic: 34.8 on 2	2 and 27 DF, p-value: 3.	356e-08		

ActewAGL 200


for you

The model is scrutinized to ensure that it is suited for the data. For e.g. diagnostic checking of residuals, normal Q-Q plots, leverage plots, VIF, and a number of other methods are used. Attached below are some diagnostic graphs supporting the model.

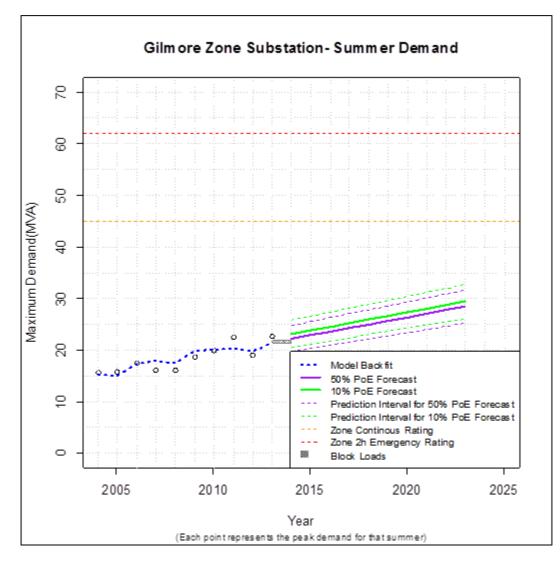
70


2) Graph and statistics assessing the back-fit accuracy of the model. The back-fit forecast is compared to the single highest peak demand point from each year.

Actev/AGL 800

Year	Gilmore Peak (MVA)	Back-fit using actual temp (MVA)	Deviation of Backfit from actual	Deviation Magnitude
2004	15.66	15.12	-3%	3%
2005	15.77	15.02	-5%	5%
2006	17.43	17.21	-1%	1%
2007	16.03	17.93	12%	12%
2008	16.03	17.44	9%	9%
2009	18.66	19.81	6%	6%
2010	19.87	20.07	1%	1%
2011	22.52	20.32	-10%	10%
2012	18.91	19.69	4%	4%
2013	22.69	21.46	-5%	5%
		Average	<u>1%</u>	<u>6%</u>

Final Model/Forecast (including block loads):


3) Graph and table showing the final forecast (incorporating potential future block loads).

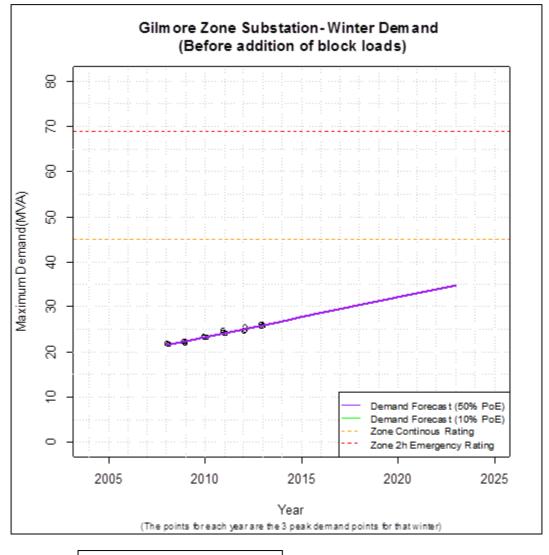
Actew/AGL	200
f	or you

Final Forec	Final Forecast (Incorporating Block Loads)				
Summer ending Feb	50% PoE (in MVA)	10% PoE (in MVA)			
2014	22.2	23.1			
2015	22.9	23.8			
2016	23.6	24.5			
2017	24.3	25.2			
2018	25.0	25.9			
2019	25.7	26.6			
2020	26.4	27.3			
2021	27.1	28.0			
2022	27.8	28.7			
2023	28.5	29.4			

4) Graph used in reports/for presentation (incorporating potential future block loads)

Supporting Document: Block Load Data

Development type	Supply source feeder	Supply source zone sub	Expected ADMD Increase (MVA)	Supply Required Date	Project probability
Commercial & industrial	Monaro Feeder 2	Gilmore	0.066	5/02/2013	100%
Commercial & industrial	Monaro Feeder	Gilmore	0.32	20/03/2013	100%

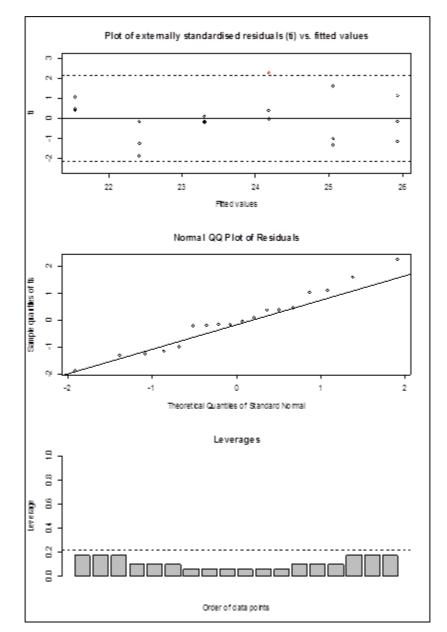

ActewAGL 800 for you

5.6.2 Gilmore Zone Winter Forecast

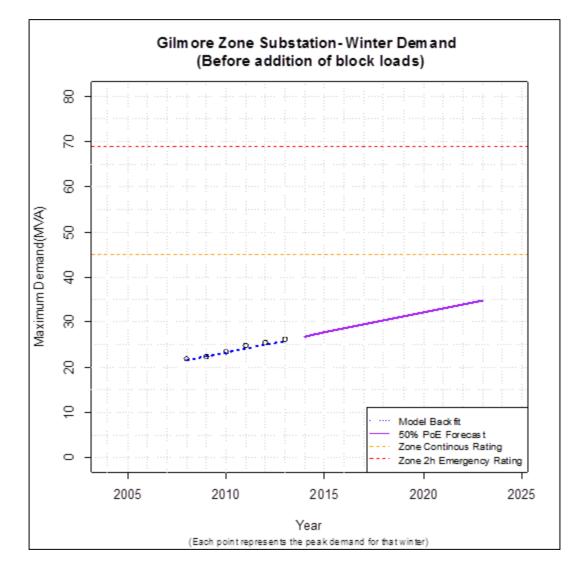
Model Selection: There is an obvious increasing trend in winter demand at Gilmore Zone over the most recent 6 years. Hence, the previous years are disregarded when modelling. Only the variable Year was found to be significant in the model, leading to the 50% and 10% PoE forecasts being the same (since there are no weather variables).

Model/Forecast (before adding block loads):

1) Graph showing historical demand, the 10% and 50% PoE 10-year forecasts, and back-fit showing what historical demand the model would forecast given 10% and 50% PoE weather conditions in the past.

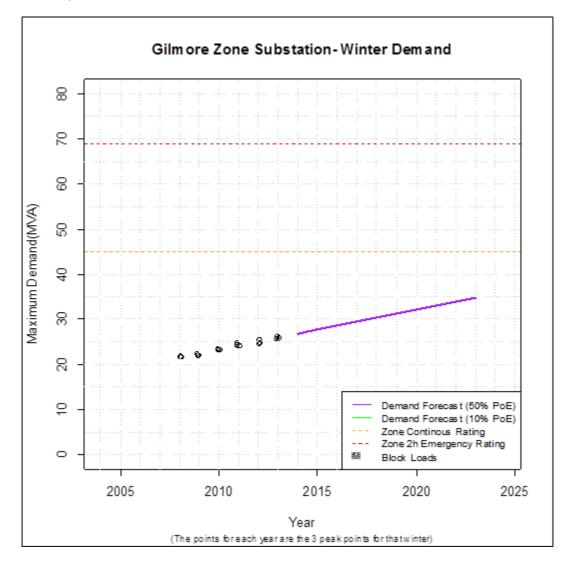


Model Details: Demand = -1741 + 0.88 * Year



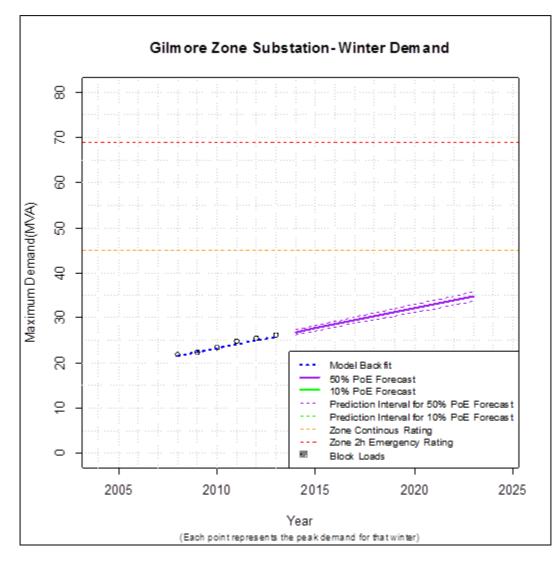
Model Coefficients				
	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	-1741	81.1	-21.46	3.21E-13
Year	0.8776	0.04034	21.76	2.6E-13
Residual standard error: 0.29	23 on 16 degrees o	f freedom		
Multiple R-squared: 0.9673,	Adjusted R-square	ed: 0.9653		
F-statistic: 473.4 on 1 and 16	DF, p-value: 2.601	e-13		

The model is scrutinized to ensure that it is suited for the data. For e.g. diagnostic checking of residuals, normal Q-Q plots, leverage plots, VIF, and a number of other methods are used. Attached below are some diagnostic graphs supporting the model.


2) Graph and statistics assessing the back-fit accuracy of the model. The back-fit forecast is compared to the single highest peak demand point from each year.

Year	Gilmore Peak (MVA)	Back-fit using actual temp (MVA)	Deviation of Backfit from actual	Deviation Magnitude
2004				
2005				
2006				
2007				
2008	21.82	21.54	-1%	1%
2009	22.37	22.42	0%	0%
2010	23.33	23.30	0%	0%
2011	24.75	24.18	-2%	2%
2012	25.48	25.05	-2%	2%
2013	26.23	25.93	-1%	1%
		Average	-1%	<u>1%</u>

Final Model/Forecast (including block loads):


3) Graph and table showing the final forecast (incorporating potential future block loads).

Actew/AGL	200
f	or you

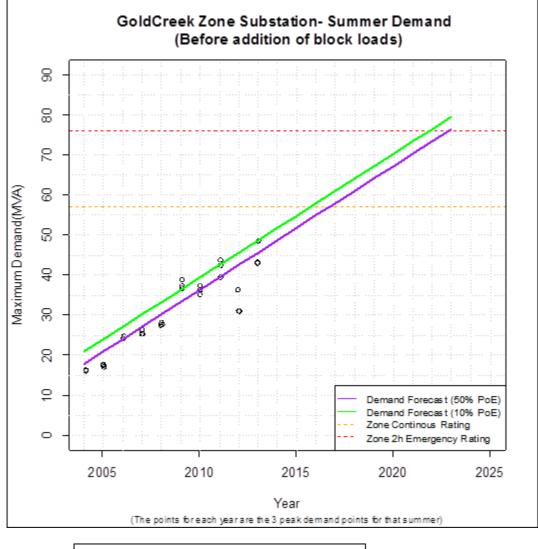
Final Fore	Final Forecast (Incorporating Block Loads)				
Winter Ending Aug	50% PoE (in MVA)	10% PoE (in MVA)			
2014	26.8	26.8			
2015	27.7	27.7			
2016	28.6	28.6			
2017	29.4	29.4			
2018	30.3	30.3			
2019	31.2	31.2			
2020	32.1	32.1			
2021	33.0	33.0			
2022	33.8	33.8			
2023	34.7	34.7			

4) Graph used in reports/for presentation (incorporating potential future block loads)

Supporting Document: Block Load Data

Development type	Supply source feeder	Supply source zone sub	Expected ADMD Increase (MVA)	Supply Required Date	Project probability
None on record					

ActewAGL 200 for you

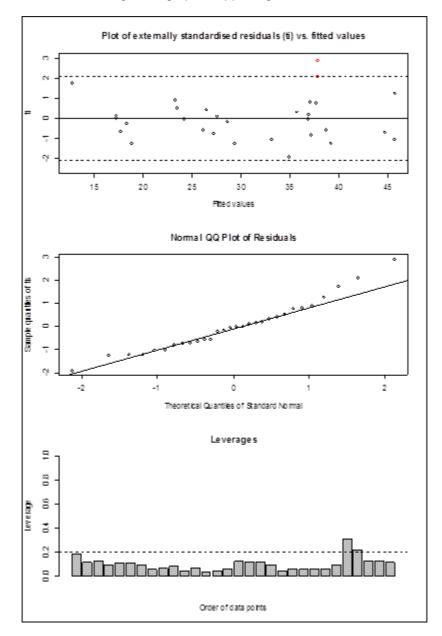

5.7 Gold Creek Zone

5.7.1 Gold Creek Zone Summer Forecast

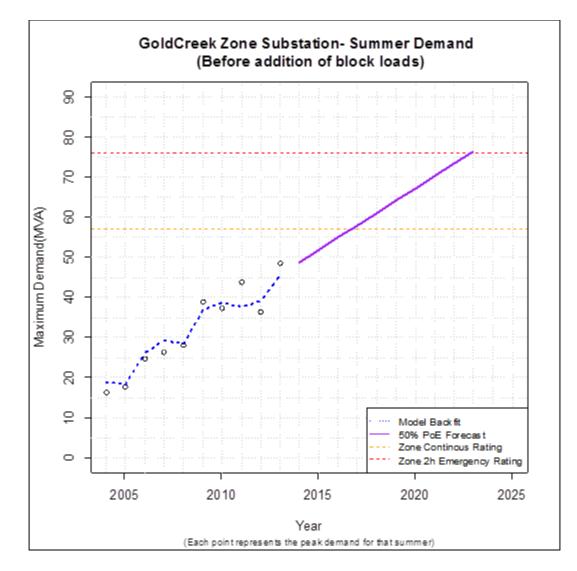
Model Selection: Model with variables Year and CDD selected based on stepwise procedures and checking against other statistical criteria.

Model/Forecast (before adding block loads):

1) Graph showing historical demand, the 10% and 50% PoE 10-year forecasts, and back-fit showing what historical demand the model would forecast given 10% and 50% PoE weather conditions in the past.

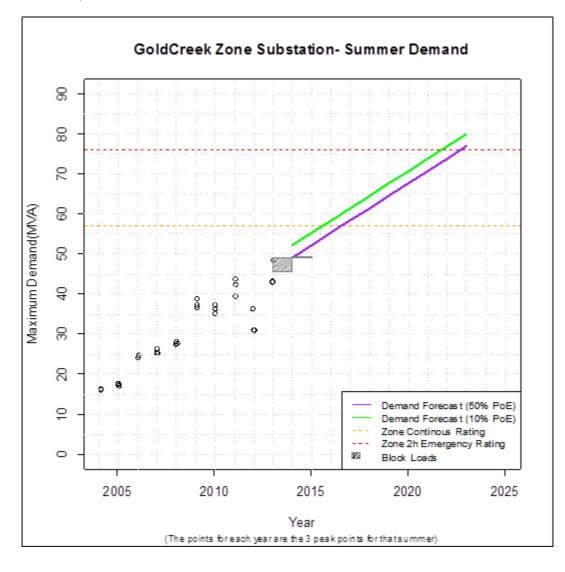


Model Details: Demand = -6172 + 3.08 * Year + 1.46 * CDD


Model Coefficients				
	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	-6172.045	310.8528	-19.855	< 2e-16
Year	3.0817	0.1547	19.922	< 2e-16
CDD	1.456	0.2116	6.879	2.16E-07
Residual standard error: 2.42	25 on 27 degrees of	freedom		·
Multiple R-squared: 0.9402,	Adjusted R-square	ed: 0.9358		
F-statistic: 212.3 on 2 and 27	7 DF, p-value: < 2.2	e-16		

for you

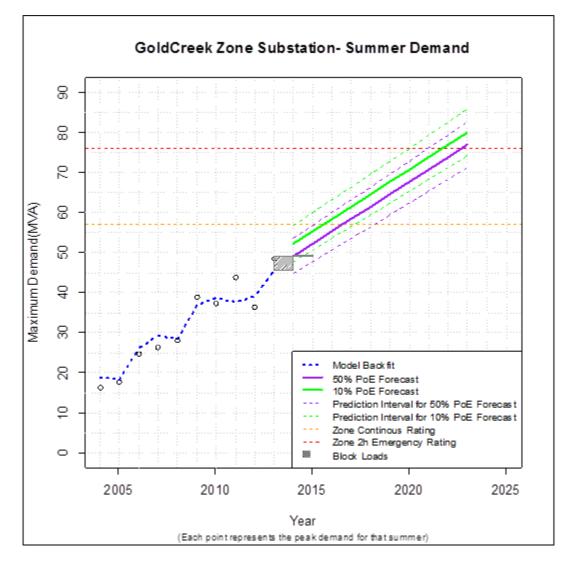
The model is scrutinized to ensure that it is suited for the data. For e.g. diagnostic checking of residuals, normal Q-Q plots, leverage plots, VIF, and a number of other methods are used. Attached below are some diagnostic graphs supporting the model.



2) Graph and statistics assessing the back-fit accuracy of the model. The back-fit forecast is compared to the single highest peak demand point from each year.

Year	Gold Creek Peak (MVA)	Back-fit using actual temp (MVA)	Deviation of Backfit from actual	Deviation Magnitude
2004	16.41	18.79	14%	14%
2005	17.76	18.30	3%	3%
2006	24.8	26.12	5%	5%
2007	26.42	29.27	11%	11%
2008	28.16	28.57	1%	1%
2009	38.84	36.96	-5%	5%
2010	37.34	38.66	4%	4%
2011	43.86	37.81	-14%	14%
2012	36.34	39.15	8%	8%
2013	48.48	45.65	-6%	6%
		Average	<u>2%</u>	<u>7%</u>

Final Model/Forecast (including block loads):


3) Graph and table showing the final forecast (incorporating potential future block loads).

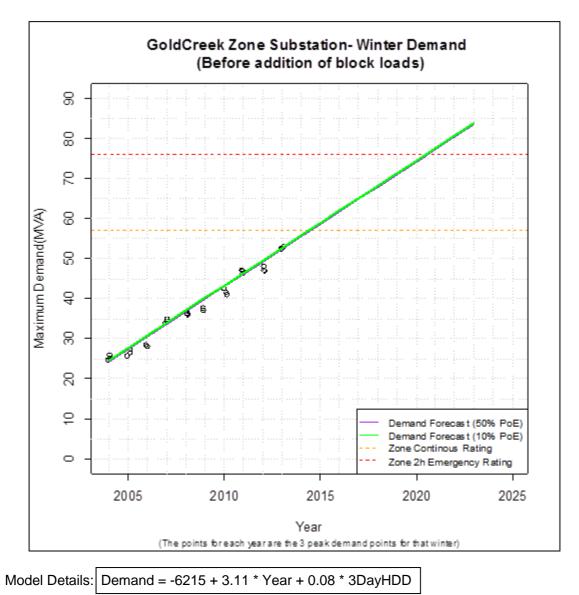
Actew/AGL	200
f	or you

Final Forec	ast (Incorporating Block I	_oads)
Summer ending Feb	50% PoE (in MVA)	10% PoE (in MVA)
2014	49.2	52.2
2015	52.3	55.3
2016	55.4	58.4
2017	58.4	61.5
2018	61.5	64.6
2019	64.6	67.7
2020	67.7	70.7
2021	70.8	73.8
2022	73.8	76.9
2023	76.9	80.0

4) Graph used in reports/for presentation (incorporating potential future block loads)

Supporting Document: Block Load Data

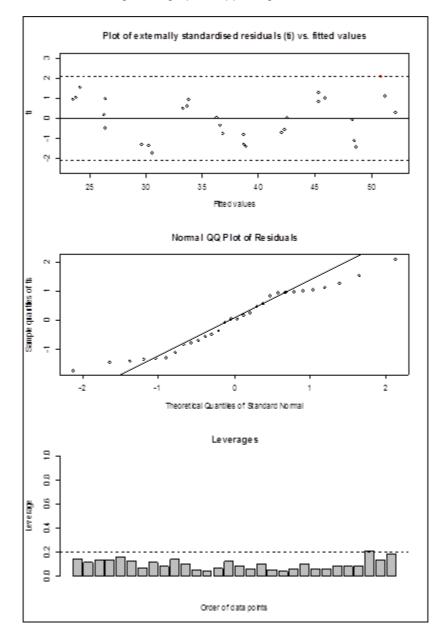
Development type	Supply source feeder	Supply source zone sub	Expected ADMD Increase (MVA)	Supply Required Date	Project probability
Residential Development	Nona 2	GoldCreek	0.05	23/03/2013	100%
Commercial Development	West Feeder	GoldCreek	0.055	15/05/2013	100%
	Anthony Rolfe	GoldCreek	0.22	21/06/2013	100%
Community Development	Gribble feeder	GoldCreek	0.14	8/07/2013	100%
Commercial Development	Riley Feeder	GoldCreek	0.171	26/07/2013	100%
Commercial Development	Gungahlin Feeder	GoldCreek	0.15	16/08/2013	90%
Residential Development	Magenta Feeder	GoldCreek	0.06	16/08/2013	100%
Commercial & Industrial	Gungahlin	GoldCreek	0.115	1/10/2013	10%
Residential & Commercial	Anthony Rolfe	GoldCreek	0.35	2/10/2013	100%
Commercial & Industrial	Gurrang	GoldCreek	0.25	3/10/2013	100%
Commercial	Gungahlin Feeder	GoldCreek	0.15	30/10/2013	40%
Commercial Development	Gribble feeder	GoldCreek	0.18	31/10/2013	100%
Residential Development	Anthony Rolfe Feeder	GoldCreek	0.065	13/11/2013	100%
Commercial & Industrial	Gungahlin / Gribble	GoldCreek	0.7	28/11/2013	100%
Commercial Development	Gribble feeder	GoldCreek	0.9	3/01/2014	90%
Residential & Commercial Development	Gurrang Feeder	GoldCreek	0.315	2/02/2014	90%
Commercial Development	Saunders Feeder	GoldCreek	0.144	1/01/2015	10%
Residential Development	Nona Feeder	GoldCreek	0.475	1/01/2015	10%



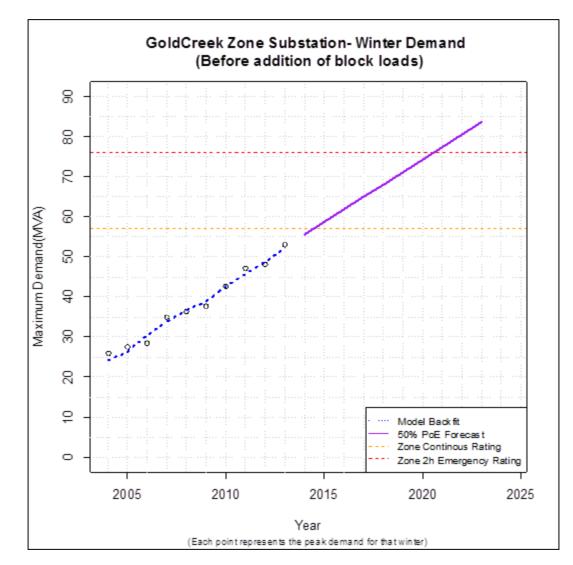
5.7.2 Gold Creek Zone Winter Forecast

Model Selection: Model with variables Year and 3DayHDD, selected based on stepwise procedures and checking against other statistical criteria. 3DayHDD is marginally significant.

Model/Forecast (before adding block loads):

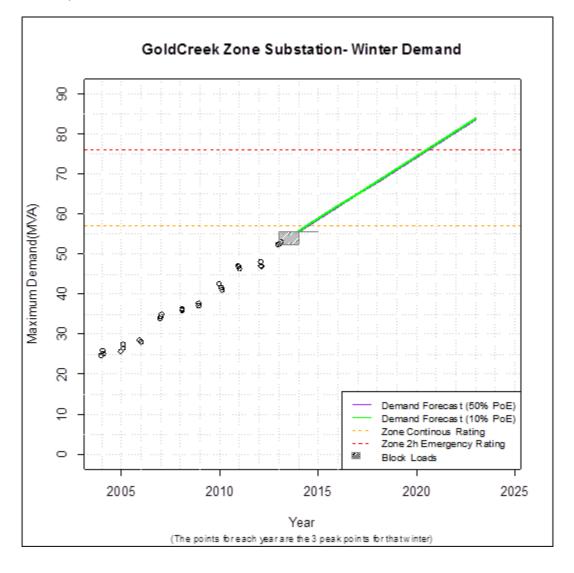

1) Graph showing historical demand, the 10% and 50% PoE 10-year forecasts, and back-fit showing what historical demand the model would forecast given 10% and 50% PoE weather conditions in the past.

Model Coefficients						
	Estimate	Std. Error	t value	Pr(> t)		
(Intercept)	-6215	170.9	-36.364	<2e-16		
Year	3.112	0.08495	36.634	<2e-16		
3DayHDD	0.08481	0.04769	1.778	0.0866		
Residual standard error:	1.302 on 27 degrees	s of freedom	•	·		
Multiple R-squared: 0.9809, Adjusted R-squared: 0.9795						
F-statistic: 693.2 on 2 and	d 27 DF, p-value: <	2.2e-16				


for you

The model is scrutinized to ensure that it is suited for the data. For e.g. diagnostic checking of residuals, normal Q-Q plots, leverage plots, VIF, and a number of other methods are used. Attached below are some diagnostic graphs supporting the model.

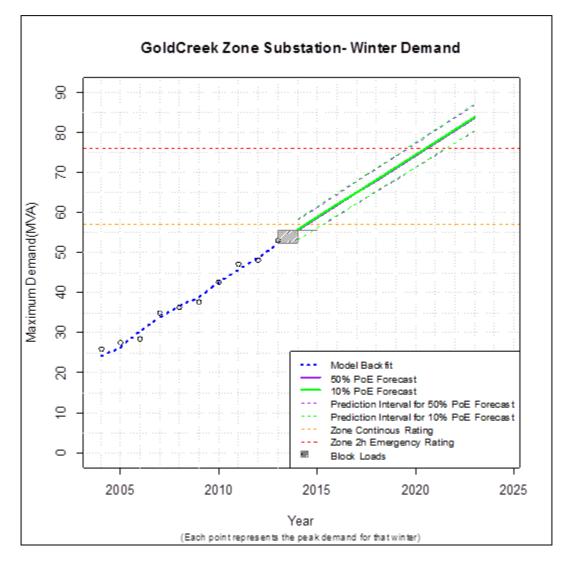
88


2) Graph and statistics assessing the back-fit accuracy of the model. The back-fit forecast is compared to the single highest peak demand point from each year.

ActewAGL 200 for you

Year	Gold Creek Peak (MVA)	Back-fit using actual temp (MVA)	Deviation of Backfit from actual	Deviation Magnitude
2004	26	24.19	-7%	7%
2005	27.6	26.41	-4%	4%
2006	28.56	30.53	7%	7%
2007	34.93	33.78	-3%	3%
2008	36.35	36.83	1%	1%
2009	37.69	38.88	3%	3%
2010	42.61	42.54	0%	0%
2011	47.11	45.85	-3%	3%
2012	48.19	48.62	1%	1%
2013	53.11	52.16	-2%	2%
		Average	<u>-1%</u>	<u>3%</u>

Final Model/Forecast (including block loads):


3) Graph and table showing the final forecast (incorporating potential future block loads).

Actew/AGL	200
fe	or you

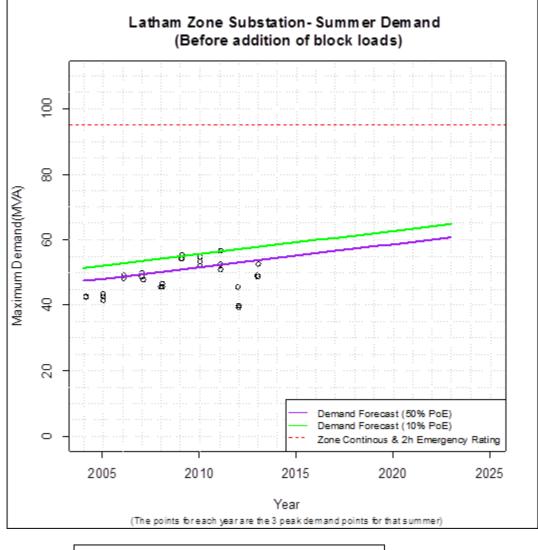
Final Forecast (Incorporating Block Loads)					
Winter Ending Aug	50% PoE (in MVA)	10% PoE (in MVA)			
2014	55.6	55.7			
2015	58.7	58.9			
2016	61.8	62.0			
2017	64.9	65.1			
2018	68.0	68.2			
2019	71.1	71.3			
2020	74.2	74.4			
2021	77.4	77.5			
2022	80.5	80.6			
2023	83.6	83.7			

4) Graph used in reports/for presentation (incorporating potential future block loads)

Supporting Document: Block Load Data

Development type	Supply source feeder	Supply source zone sub	Expected ADMD Increase (MVA)	Supply Required Date	Project probability
Commercial Development	Riley Feeder	GoldCreek	0.171	26/07/2013	100%
Commercial Development	Gungahlin Feeder	GoldCreek	0.15	16/08/2013	90%
Residential Development	Magenta Feeder	GoldCreek	0.06	16/08/2013	100%
Commercial & Industrial	Gungahlin	GoldCreek	0.115	1/10/2013	10%
Residential & Commercial	Anthony Rolfe	GoldCreek	0.35	2/10/2013	100%
Commercial & Industrial	Gurrang	GoldCreek	0.25	3/10/2013	100%
Commercial	Gungahlin Feeder	GoldCreek	0.15	30/10/2013	40%
Commercial Development	Gribble feeder	GoldCreek	0.18	31/10/2013	100%
Residential Development	Anthony Rolfe Feeder	GoldCreek	0.065	13/11/2013	100%
Commercial & Industrial	Gungahlin / Gribble	GoldCreek	0.7	28/11/2013	100%
Commercial Development	Gribble feeder	GoldCreek	0.9	3/01/2014	90%
Residential & Commercial Development	Gurrang Feeder	GoldCreek	0.315	2/02/2014	90%
Commercial Development	Saunders Feeder	GoldCreek	0.144	1/01/2015	10%
Residential Development	Nona Feeder	GoldCreek	0.475	1/01/2015	10%

ActewAGL 200 for you

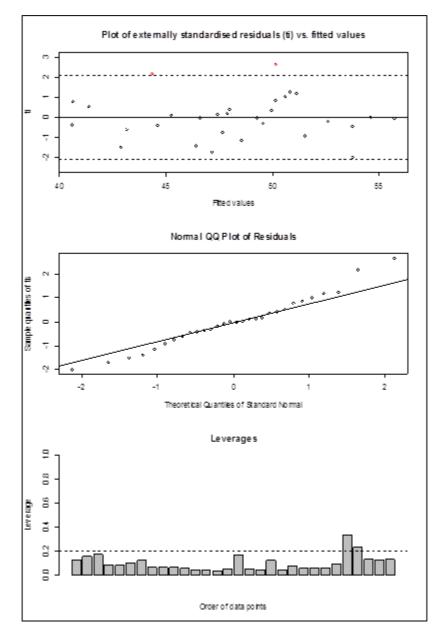

5.8 Latham Zone

5.8.1 Latham Zone Summer Forecast

Model Selection: Model with variables Year and CDD, selected based on stepwise procedures and checking against other statistical criteria.

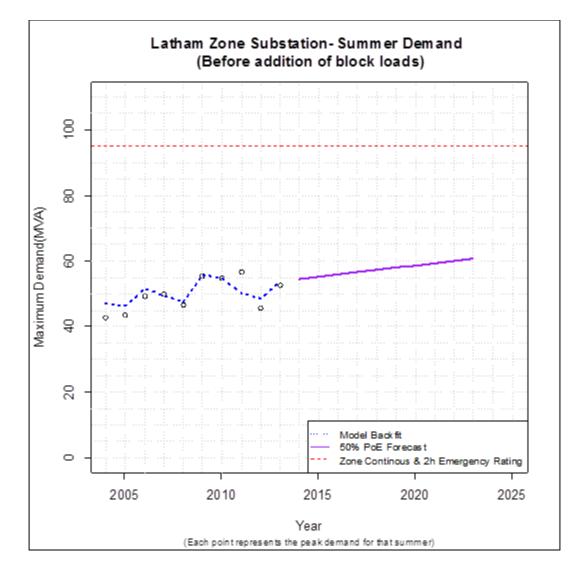
Model/Forecast (before adding block loads):

1) Graph showing historical demand, the 10% and 50% PoE 10-year forecasts, and back-fit showing what historical demand the model would forecast given 10% and 50% PoE weather conditions in the past.



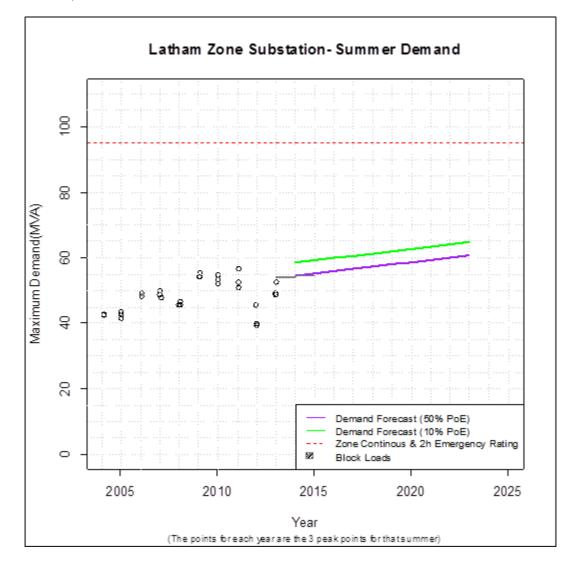
Model Details: Demand = -1380.87 + 0.70 * Year + 1.92 * CDD

Model Coefficients							
	Estimate	Std. Error	t value	Pr(> t)			
(Intercept)	-1380.8673	359.6953	-3.839	0.000677			
Year	0.7033	0.179	3.929	0.000534			
CDD	1.9181	0.2751	6.973	1.70E-07			
Residual standard error: 2.813 on 27 degrees of freedom							
Multiple R-squared: 0.6945, Adjusted R-squared: 0.6718							
F-statistic: 30.69 on 2 and 27 DF, p-value: 1.118e-07							


for you

The model is scrutinized to ensure that it is suited for the data. For e.g. diagnostic checking of residuals, normal Q-Q plots, leverage plots, VIF, and a number of other methods are used. Attached below are some diagnostic graphs supporting the model.

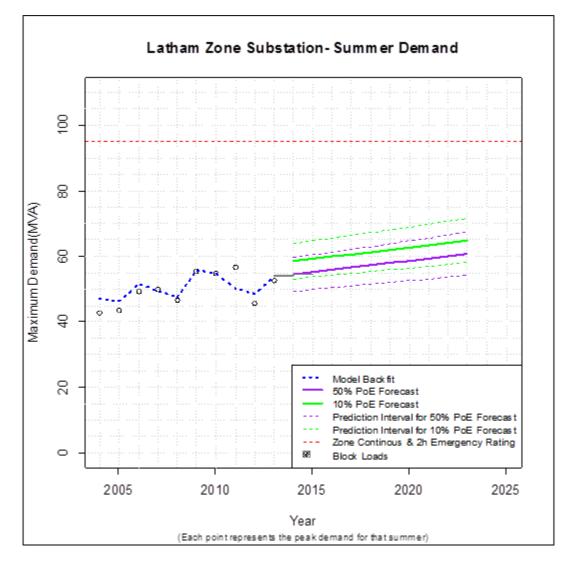
94



2) Graph and statistics assessing the back-fit accuracy of the model. The back-fit forecast is compared to the single highest peak demand point from each year.

Year	Latham Peak (MVA)	Back-fit using actual temp (MVA)	Deviation of Backfit from actual	Deviation Magnitude
2004	42.81	47.14	10%	10%
2005	43.47	46.41	7%	7%
2006	49.12	51.52	5%	5%
2007	49.9	49.54	-1%	1%
2008	46.57	47.65	2%	2%
2009	55.56	55.74	0%	0%
2010	54.69	54.62	0%	0%
2011	56.69	50.15	-12%	12%
2012	45.51	48.55	7%	7%
2013	52.58	53.76	2%	2%
		Average	<u>2%</u>	<u>5%</u>

Final Model/Forecast (including block loads):


3) Graph and table showing the final forecast (incorporating potential future block loads).

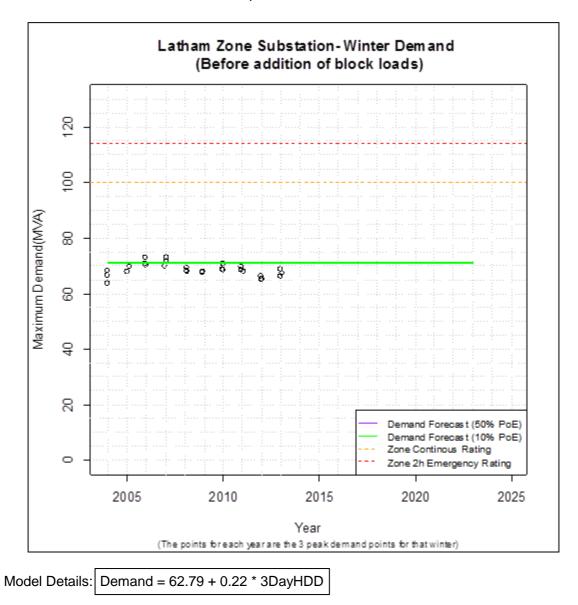
Actew/AGL	200
f	or you

Final Forecast (Incorporating Block Loads)					
Summer ending Feb	50% PoE (in MVA)	10% PoE (in MVA)			
2014	54.5	58.5			
2015	55.2	59.2			
2016	55.9	59.9			
2017	56.6	60.6			
2018	57.3	61.3			
2019	58.0	62.0			
2020	58.7	62.7			
2021	59.4	63.4			
2022	60.1	64.1			
2023	60.8	64.8			

4) Graph used in reports/for presentation (incorporating potential future block loads)

Supporting Document: Block Load Data

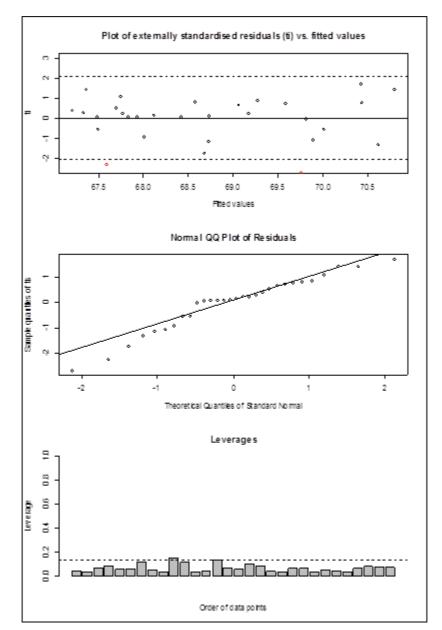
Development type	Supply source feeder	Supply source zone sub	Expected ADMD Increase (MVA)	Supply Required Date	Project probability
Commercial & industrial	Bowley Feeder	Latham	0.13	20/02/2013	100%
Commercial & industrial	Tillyard Feeder	Latham	0.225	17/04/2013	100%
Residential Development	Verbrugghen Feeder	Latham	0.02	21/05/2013	100%
Residential & Commercial Development	Patrick Feeder	Latham	0.077	27/06/2013	100%
Commercial Development	Bowley Feeder	Latham	0.13	1/01/2015	10%
Commercial Development	Fielder Feeder	Latham	0.08	1/01/2015	10%
Commercial Development	Patrick Feeder 2	Latham	0.13	1/01/2015	90%

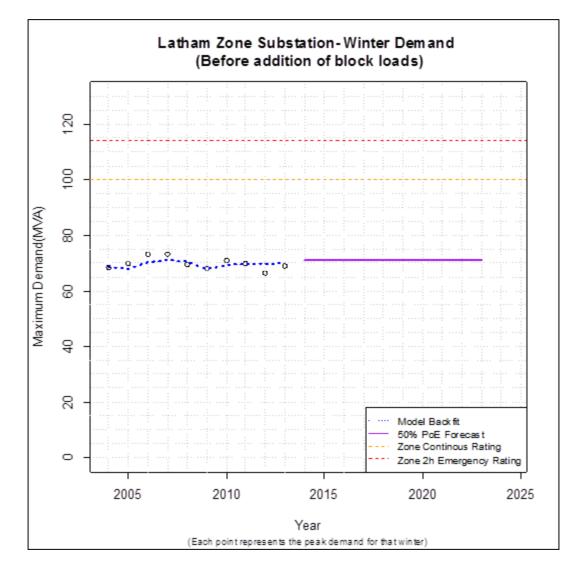

ActewAGL 800 for you

5.8.2 Latham Zone Winter Forecast

Model Selection: Model with variable 3DayHDD, selected based on stepwise procedures and checking against other statistical criteria.

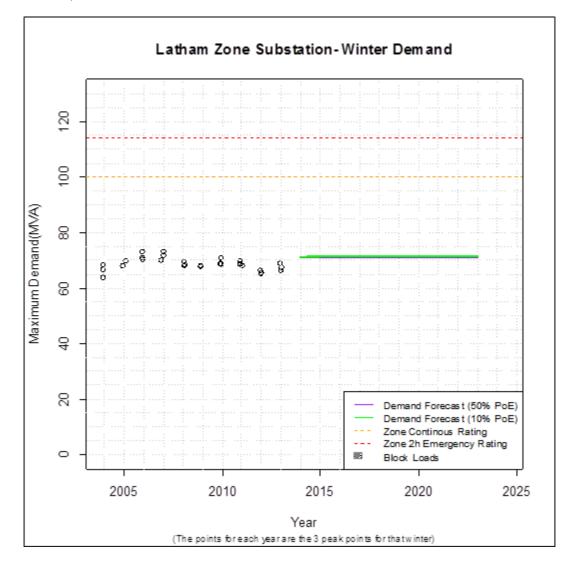
Model/Forecast (before adding block loads):


1) Graph showing historical demand, the 10% and 50% PoE 10-year forecasts, and back-fit showing what historical demand the model would forecast given 10% and 50% PoE weather conditions in the past.



Model Coefficients							
	Estimate	Std. Error	t value	Pr(> t)			
(Intercept)	62.7877	1.88123	33.376	< 2e-16			
3DayHDD	0.22321	0.06963	3.206	0.00336			
Residual standard error: 1.873 on 28 degrees of freedom							
Multiple R-squared: 0.2685, Adjusted R-squared: 0.2424							
F-statistic: 10.28 on 1 and 28 DF, p-value: 0.003356							

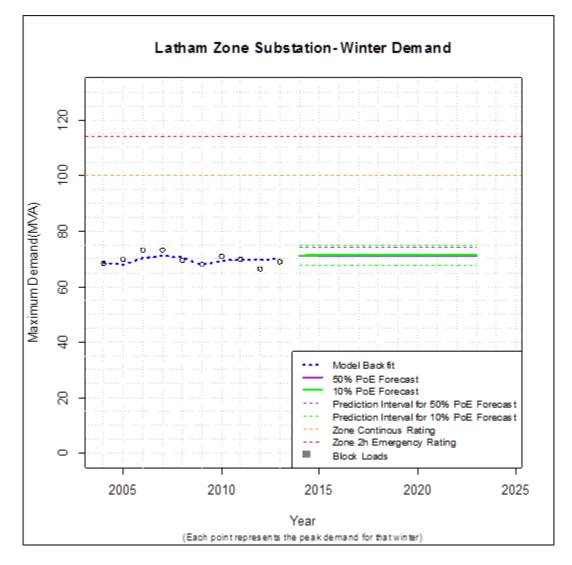
The model is scrutinized to ensure that it is suited for the data. For e.g. diagnostic checking of residuals, normal Q-Q plots, leverage plots, VIF, and a number of other methods are used. Attached below are some diagnostic graphs supporting the model.



2) Graph and statistics assessing the back-fit accuracy of the model. The back-fit forecast is compared to the single highest peak demand point from each year.

Year	Latham Peak (MVA)	Back-fit using actual temp (MVA)	Deviation of Backfit from actual	Deviation Magnitude
2004	68.43	68.73	0%	0%
2005	69.88	67.77	-3%	3%
2006	73.33	70.42	-4%	4%
2007	73.21	70.80	-3%	3%
2008	69.62	70.62	1%	1%
2009	68	67.83	0%	0%
2010	70.87	69.27	-2%	2%
2011	69.76	69.81	0%	0%
2012	66.33	69.75	5%	5%
2013	69.04	70.01	1%	1%
		Average	<u>0%</u>	<u>2%</u>

Final Model/Forecast (including block loads):


3) Graph and table showing the final forecast (incorporating potential future block loads).

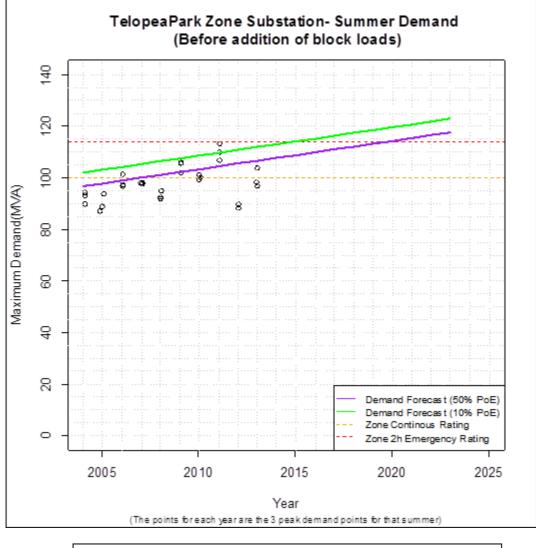
Final Forecast (Incorporating Block Loads)					
Winter ending Aug	50% PoE (in MVA)	50% PoE (in MVA)			
2014	70.8	71.2			
2015	71.0	71.4			
2016	71.0	71.4			
2017	71.0	71.4			
2018	71.0	71.4			
2019	71.0	71.4			
2020	71.0	71.4			
2021	71.0	71.4			
2022	71.0	71.4			
2023	71.0	71.4			

4) Graph used in reports/for presentation (incorporating potential future block loads)

Supporting Document: Block Load Data

Development type	Supply source feeder	Supply source zone sub	Expected ADMD Increase (MVA)	Supply Required Date	Project probability
Commercial Development	Bowley Feeder	Latham	0.13	1/01/2015	10%
Commercial Development	Fielder Feeder	Latham	0.08	1/01/2015	10%
Commercial Development	Patrick Feeder 2	Latham	0.13	1/01/2015	90%

ActewAGL 200 for you

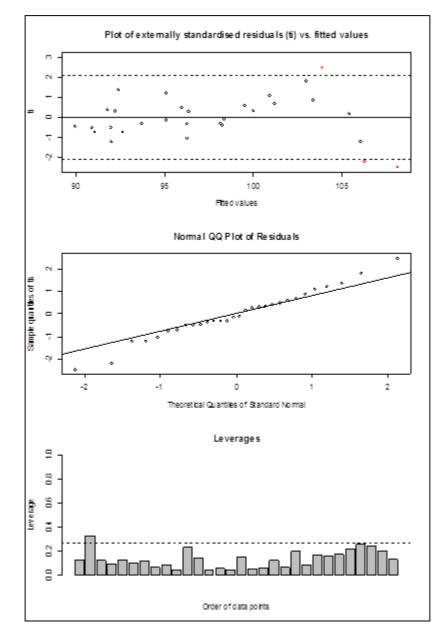

5.9 Telopea Park Zone

5.9.1 Telopea Park Zone Summer Forecast

Model Selection: Model with variables Year, CDD and 3DayCDD selected based on stepwise procedures and checking against other statistical criteria.

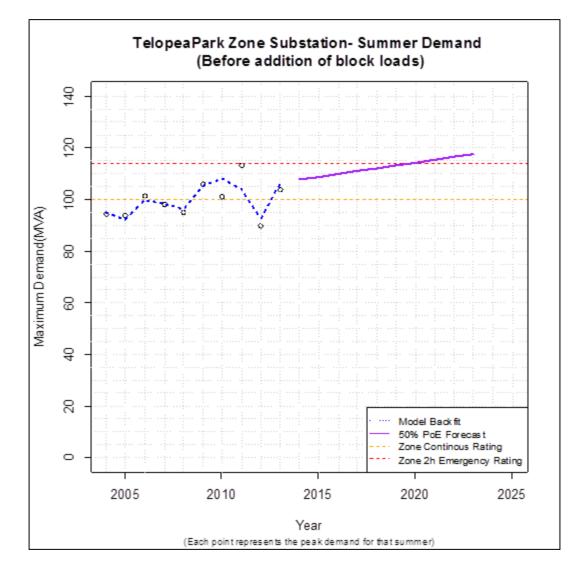
Model/Forecast (before adding block loads):

1) Graph showing historical demand, the 10% and 50% PoE 10-year forecasts, and back-fit showing what historical demand the model would forecast given 10% and 50% PoE weather conditions in the past.



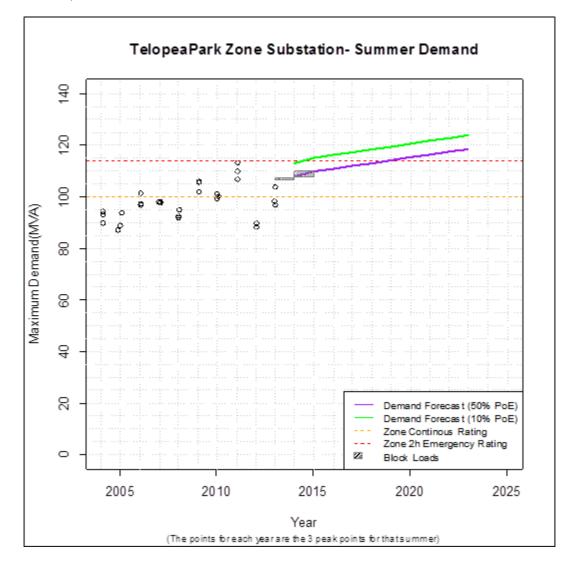
Model Details: Demand = -2128.04 + 1.10 * Year + 1.66 * CDD + 0.35 * 3DayCDD

Model Coefficients					
	Estimate	Std. Error	t value	Pr(> t)	
(Intercept)	-2128.0409	585.0098	-3.638	0.001194	
Year	1.0975	0.291	3.772	0.000845	
CDD	1.6552	0.4722	3.505	1.67E-03	
3DayCDD	0.3514	0.1613	2.178	3.87E-02	
Residual standard error: 4.411 on 26 degrees of freedom					
Multiple R-squared: 0.616, Adjusted R-squared: 0.5716					
F-statistic: 13.9 on 3 and 26 DF, p-value: 1.327e-05					


for you

The model is scrutinized to ensure that it is suited for the data. For e.g. diagnostic checking of residuals, normal Q-Q plots, leverage plots, VIF, and a number of other methods are used. Attached below are some diagnostic graphs supporting the model.

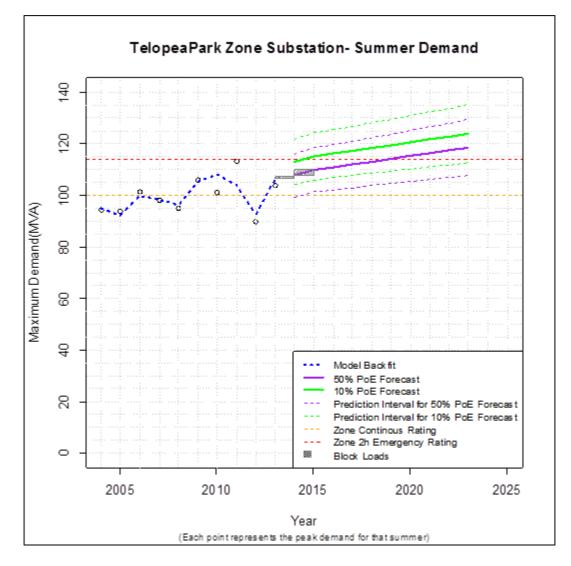
106



2) Graph and statistics assessing the back-fit accuracy of the model. The back-fit forecast is compared to the single highest peak demand point from each year.

Year	Telopea Park Peak (MVA)	Back-fit using actual temp (MVA)	Deviation of Backfit from actual	Deviation Magnitude
2004	94.47	95.07	1%	1%
2005	93.67	92.21	-2%	2%
2006	101.38	100.01	-1%	1%
2007	98.19	98.36	0%	0%
2008	94.95	96.28	1%	1%
2009	106.12	105.42	-1%	1%
2010	101.11	108.13	7%	7%
2011	113.35	103.85	-8%	8%
2012	89.7	92.65	3%	3%
2013	103.91	106.27	2%	2%
		Average	<u>0%</u>	<u>3%</u>

Final Model/Forecast (including block loads):


3) Graph and table showing the final forecast (incorporating potential future block loads).

Actew/AGL	200
fe	or you

Final Forecast (Incorporating Block Loads)				
Summer ending Feb	50% PoE (in MVA)	10% PoE (in MVA)		
2014	107.8	113.1		
2015	109.8	115.2		
2016	110.9	116.2		
2017	112.0	117.3		
2018	113.1	118.4		
2019	114.2	119.5		
2020	115.3	120.6		
2021	116.4	121.7		
2022	117.5	122.8		
2023	118.6	123.9		

4) Graph used in reports/for presentation (incorporating potential future block loads)

Supporting Document: Block Load Data

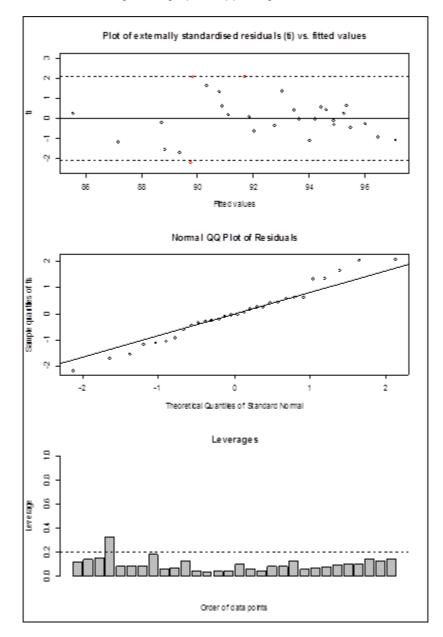
Development type	Supply source feeder	Supply source zone sub	Expected ADMD Increase (MVA)	Supply Required Date	Project probability
Residential Development	Strzelecki Feeder	Telopea	0.065	15/04/2013	100%
Residential Development	Monash Feeder	Telopea	0.24	16/04/2013	100%
Residential Development	Monash Feeder	Telopea	0.24	22/04/2013	100%
Commercial	Sandalwood Feeder	Telopea	0.06	13/05/2013	100%
Commercial	Forester Feeder	Telopea	0.06	14/08/2013	100%
Residential Development	Monash Feeder	Telopea	0.5	20/05/2014	95%
Commercial	Mundaring Feeder	Telopea	1.4	15/07/2014	90%
Commercial	Young feeder	Telopea	0.31	1/08/2014	90%
Commercial Development	Giles St Feeder	Telopea	0.55	1/01/2015	10%
Residential Development	Jardine Feeder	Telopea	0.06	1/01/2015	10%

5.9.2 Telopea Park Zone Winter Forecast

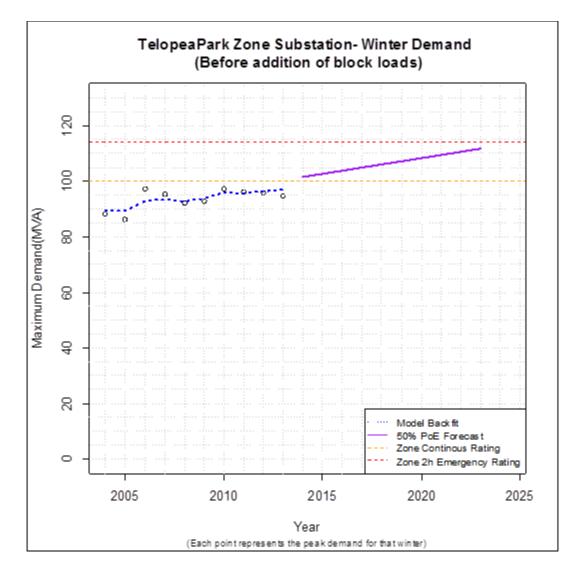
Model Selection: Model with variables Year and 3DayHDD, selected based on stepwise procedures and checking against other statistical criteria.

Model/Forecast (before adding block loads):

1) Graph showing historical demand, the 10% and 50% PoE 10-year forecasts, and back-fit showing what historical demand the model would forecast given 10% and 50% PoE weather conditions in the past.

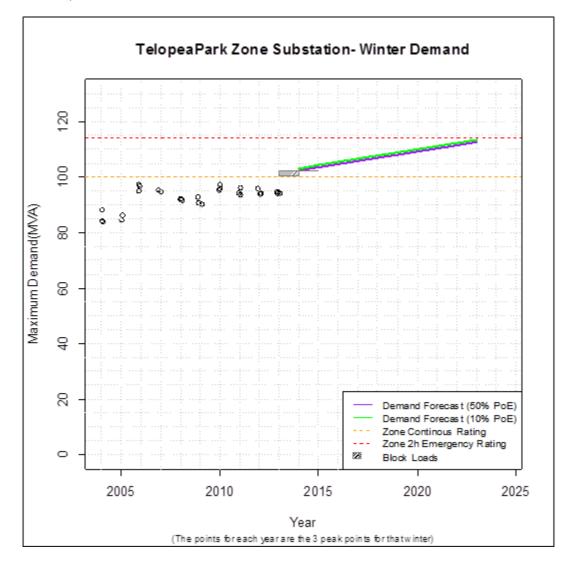


	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	-2209.1585	440.1519	-5.019	0.0000289
Year	1.1408	0.2182	5.229	0.0000165
3DayHDD	0.3646	0.1375	2.651	0.0133
Residual standard er	or: 2.982 on 27 degrees	of freedom		•
Multiple R-squared: 0	.5032, Adjusted R-squ	uared: 0.4664		
F-statistic: 13.67 on 2	and 27 DF, p-value: 7.9	922e-05		


ActewAGL 200

for you

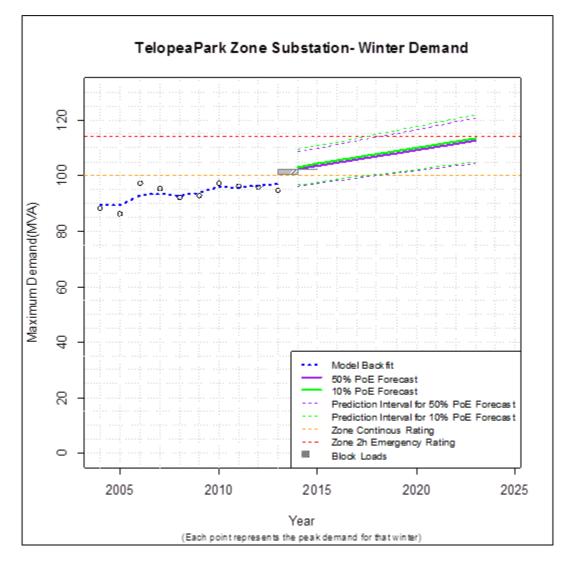
The model is scrutinized to ensure that it is suited for the data. For e.g. diagnostic checking of residuals, normal Q-Q plots, leverage plots, VIF, and a number of other methods are used. Attached below are some diagnostic graphs supporting the model.


2) Graph and statistics assessing the back-fit accuracy of the model. The back-fit forecast is compared to the single highest peak demand point from each year.

Actev/AGL 200 for you

Year	Telopea Park Peak (MVA)	Back-fit using actual temp (MVA)	Deviation of Backfit from actual	Deviation Magnitude
2004	88.13	89.75	2%	2%
2005	86.18	89.34	4%	4%
2006	97.26	93.03	-4%	4%
2007	95.39	93.44	-2%	2%
2008	92.05	92.74	1%	1%
2009	92.64	93.99	1%	1%
2010	97.15	95.99	-1%	1%
2011	96.11	95.47	-1%	1%
2012	95.8	96.45	1%	1%
2013	94.6	97.08	3%	3%
		Average	0%	<u>2%</u>

Final Model/Forecast (including block loads):


3) Graph and table showing the final forecast (incorporating potential future block loads).

Actew/AGL	200
f	or you

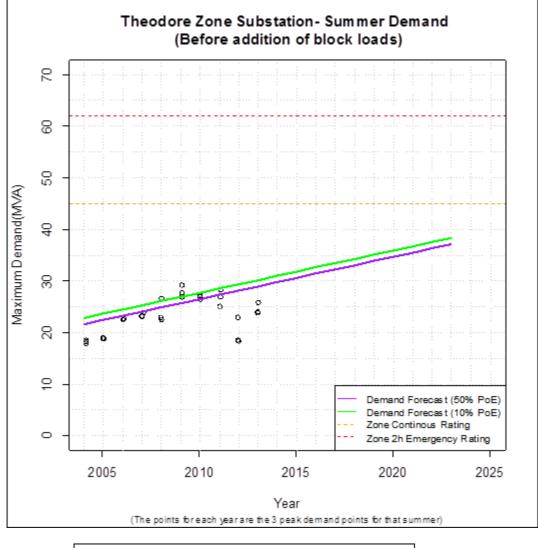
Final Fore	Final Forecast (Incorporating Block Loads)			
Winter Ending Aug	50% PoE (in MVA)	10% PoE (in MVA)		
2014	102.4	103.1		
2015	103.5	104.2		
2016	104.7	105.4		
2017	105.8	106.5		
2018	106.9	107.7		
2019	108.1	108.8		
2020	109.2	109.9		
2021	110.4	111.1		
2022	111.5	112.2		
2023	112.6	113.4		

4) Graph used in reports/for presentation (incorporating potential future block loads)

Supporting Document: Block Load Data

Development type	Supply source feeder	Supply source zone sub	Expected ADMD Increase (MVA)	Supply Required Date	Project probability
Commercial	Forester Feeder	Telopea	0.06	14/08/2013	100%
Residential Development	Monash Feeder	Telopea	0.5	20/05/2014	95%
Commercial	Mundaring Feeder	Telopea	1.4	15/07/2014	90%
Commercial	Young feeder	Telopea	0.31	1/08/2014	90%
Commercial Development	Giles St Feeder	Telopea	0.55	1/01/2015	10%
Residential Development	Jardine Feeder	Telopea	0.06	1/01/2015	10%

Actew/AGL 200 for you

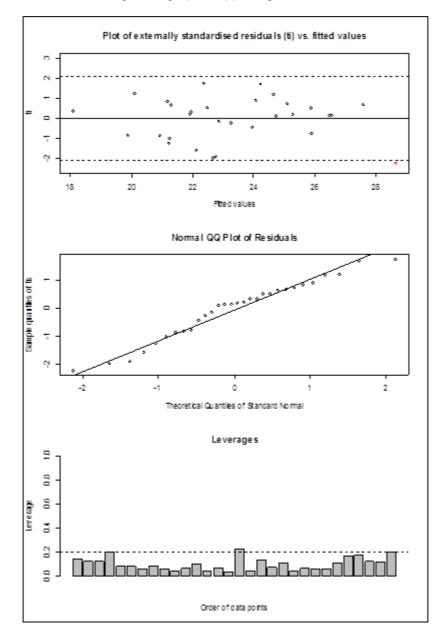

5.10 Theodore Zone

5.10.1 Theodore Zone Summer Forecast

Model Selection: Model with variables Year and 3DayCDD selected based on stepwise procedures and checking against other statistical criteria.

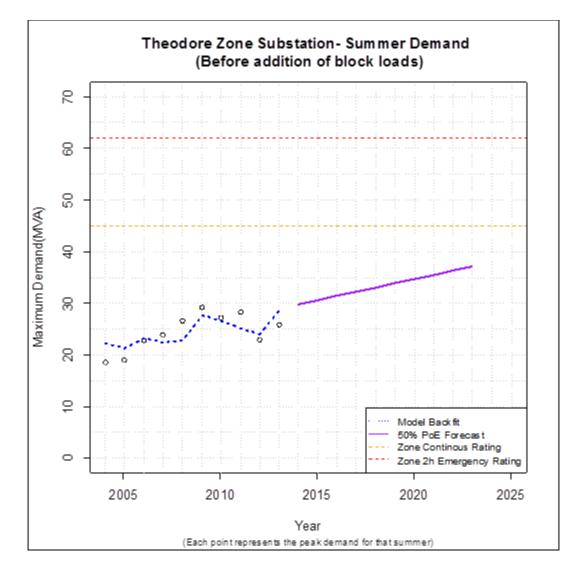
Model/Forecast (before adding block loads):

1) Graph showing historical demand, the 10% and 50% PoE 10-year forecasts, and back-fit showing what historical demand the model would forecast given 10% and 50% PoE weather conditions in the past.


Model Details: Demand = -1624.33 + 0.82 * Year + 0.24 * 3DayCDD

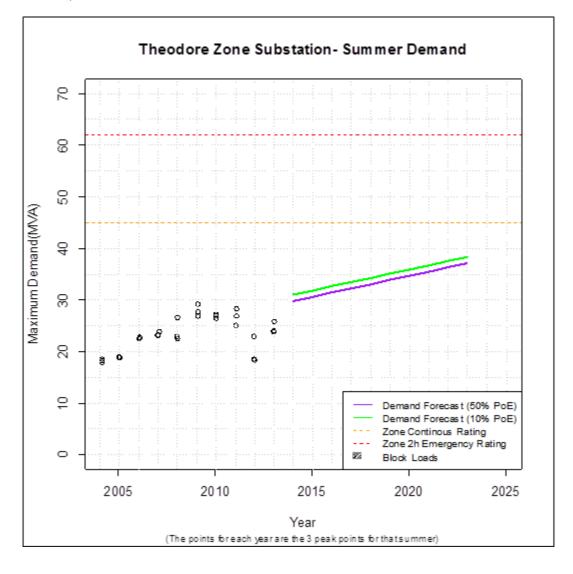
Model Coefficients				
	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	-1624.3275	350.0494	-4.64	0.0000801
Year	0.8183	0.1741	4.7	0.0000681
3DayCDD	0.2353	0.0661	3.56	1.40E-03
Residual standard error	: 2.569 on 27 degrees	of freedom	•	
Multiple R-squared: 0.4	937, Adjusted R-squ	ared: 0.4562		
F-statistic: 13.16 on 2 a	nd 27 DF, p-value: 0.0	0001023		

ActewAGL 200


for you

The model is scrutinized to ensure that it is suited for the data. For e.g. diagnostic checking of residuals, normal Q-Q plots, leverage plots, VIF, and a number of other methods are used. Attached below are some diagnostic graphs supporting the model.

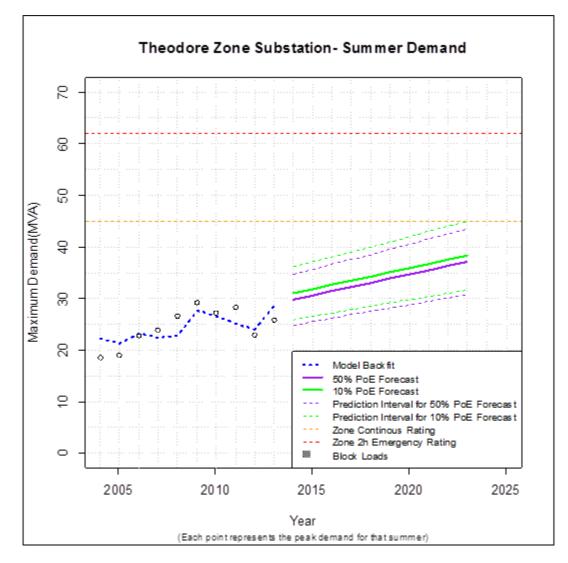
118


2) Graph and statistics assessing the back-fit accuracy of the model. The back-fit forecast is compared to the single highest peak demand point from each year.

Actev/AGL 800 for you

Year	Theodore Peak (MVA)	Back-fit using actual temp (MVA)	Deviation of Backfit from actual	Deviation Magnitude
2004	18.48	22.11	20%	20%
2005	18.9	21.23	12%	12%
2006	22.81	23.25	2%	2%
2007	23.83	22.48	-6%	6%
2008	26.63	22.84	-14%	14%
2009	29.16	27.59	-5%	5%
2010	27.19	26.55	-2%	2%
2011	28.3	25.10	-11%	11%
2012	22.88	23.95	5%	5%
2013	25.76	28.65	11%	11%
		Average	<u>1%</u>	<u>9%</u>

Final Model/Forecast (including block loads):


3) Graph and table showing the final forecast (incorporating potential future block loads).

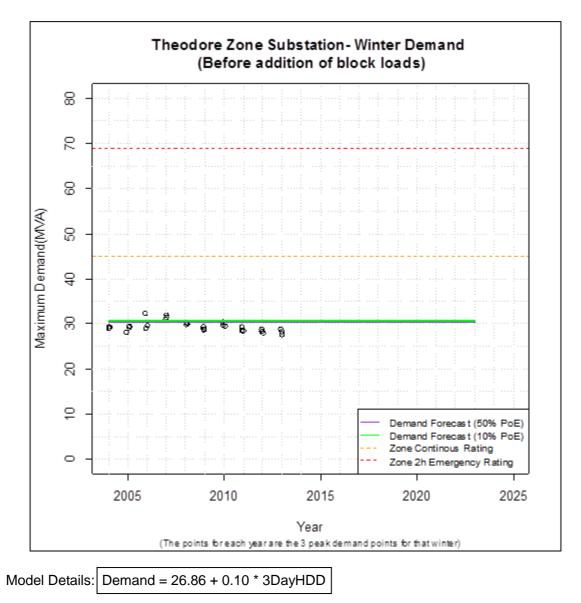
Actew/AGL	200
f	or you

Final Forecast (Incorporating Block Loads)			
Summer ending Feb	50% PoE (in MVA)	10% PoE (in MVA)	
2014	29.8	31.0	
2015	30.6	31.8	
2016	31.4	32.6	
2017	32.2	33.4	
2018	33.0	34.3	
2019	33.9	35.1	
2020	34.7	35.9	
2021	35.5	36.7	
2022	36.3	37.5	
2023	37.1	38.4	

4) Graph used in reports/for presentation (incorporating potential future block loads)

Supporting Document: Block Load Data

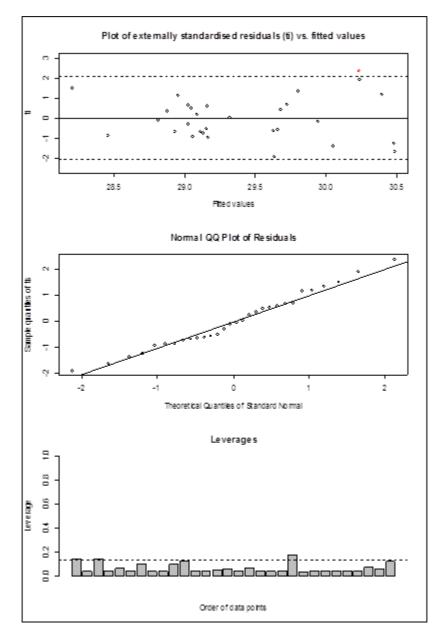
Development type	Supply source feeder	Supply source zone sub	Expected ADMD Increase (MVA)	Supply Required Date	Project probability
None on record					

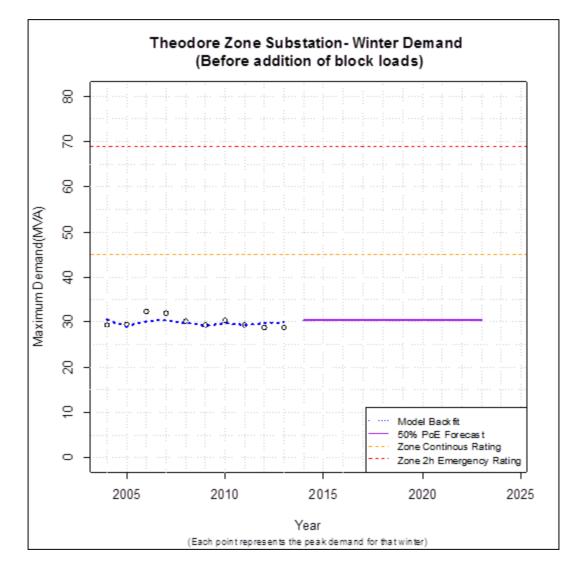


5.10.2 Theodore Zone Winter Forecast

Model Selection: Model with variables Year and 3DayHDD, selected based on stepwise procedures and checking against other statistical criteria.

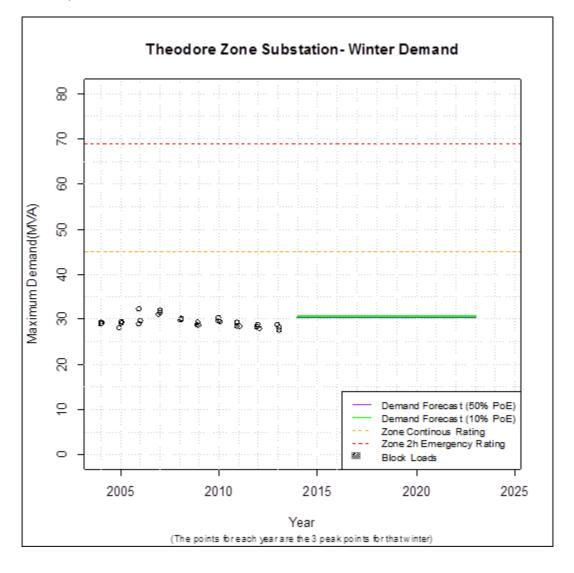
Model/Forecast (before adding block loads):


1) Graph showing historical demand, the 10% and 50% PoE 10-year forecasts, and back-fit showing what historical demand the model would forecast given 10% and 50% PoE weather conditions in the past.



Model Coefficients						
	Estimate	Std. Error	t value	Pr(> t)		
(Intercept)	26.85809	0.81145	33.099	< 2e-16		
3DayHDD	0.09857	0.0305	3.232	0.00314		
Residual standard error: 0.991 on 28 degrees of freedom						
Multiple R-squared: 0.2717, Adjusted R-squared: 0.2457						
F-statistic: 10.45 on 1 and 28	DF, p-value: 0.003	814				

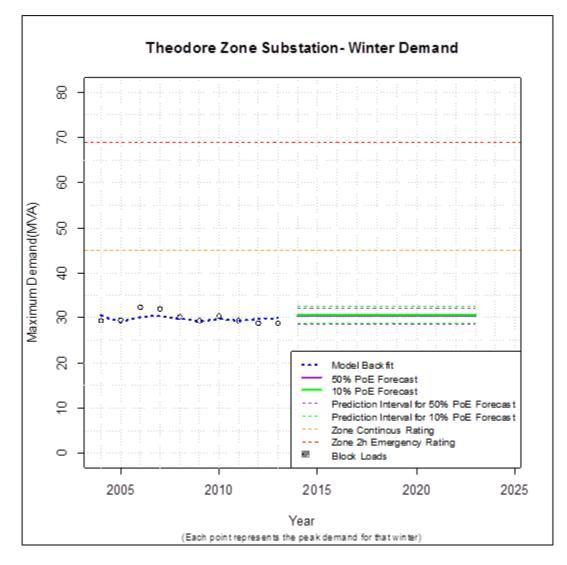
The model is scrutinized to ensure that it is suited for the data. For e.g. diagnostic checking of residuals, normal Q-Q plots, leverage plots, VIF, and a number of other methods are used. Attached below are some diagnostic graphs supporting the model.


2) Graph and statistics assessing the back-fit accuracy of the model. The back-fit forecast is compared to the single highest peak demand point from each year.

ActewAGL 800

Year	Theodore Peak (MVA)	Back-fit using actual temp (MVA)	Deviation of Backfit from actual	Deviation Magnitude
2004	29.37	30.49	4%	4%
2005	29.58	29.06	-2%	2%
2006	32.3	30.23	-6%	6%
2007	31.95	30.40	-5%	5%
2008	30.15	29.94	-1%	1%
2009	29.32	29.15	-1%	1%
2010	30.41	29.72	-2%	2%
2011	29.36	29.32	0%	0%
2012	28.75	29.63	3%	3%
2013	28.76	30.05	4%	4%
		Average	-1%	<u>3%</u>

Final Model/Forecast (including block loads):


3) Graph and table showing the final forecast (incorporating potential future block loads).

Actew/AGL	200
f	or you

Final Fore	Final Forecast (Incorporating Block Loads)					
Winter Ending Aug	50% PoE (in MVA)	10% PoE (in MVA)				
2014	30.4	30.6				
2015	30.4	30.6				
2016	30.4	30.6				
2017	30.4	30.6				
2018	30.4	30.6				
2019	30.4	30.6				
2020	30.4	30.6				
2021	30.4	30.6				
2022	30.4	30.6				
2023	30.4	30.6				

4) Graph used in reports/for presentation (incorporating potential future block loads)

Supporting Document: Block Load Data

Development type	Supply source feeder	Supply source zone sub	Expected ADMD Increase (MVA)	Supply Required Date	Project probability
None on record					

ActewAGL 200 for you

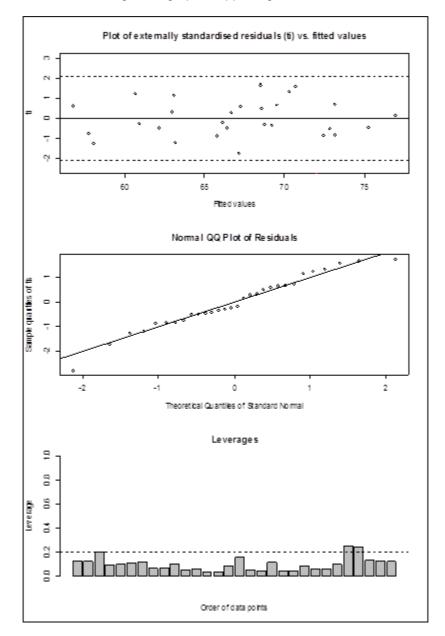
5.11 Wanniassa Zone

5.11.1 Wanniassa Zone Summer Forecast

Model Selection: Model with variables Year and CDD selected based on stepwise procedures and checking against other statistical criteria.

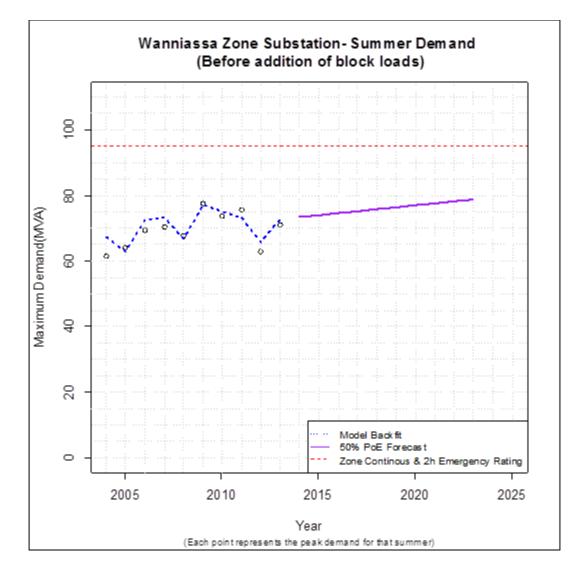
Model/Forecast (before adding block loads):

1) Graph showing historical demand, the 10% and 50% PoE 10-year forecasts, and back-fit showing what historical demand the model would forecast given 10% and 50% PoE weather conditions in the past.


Model Details: Demand = -1163.14 + 0.60 * Year + 2.73 * CDD

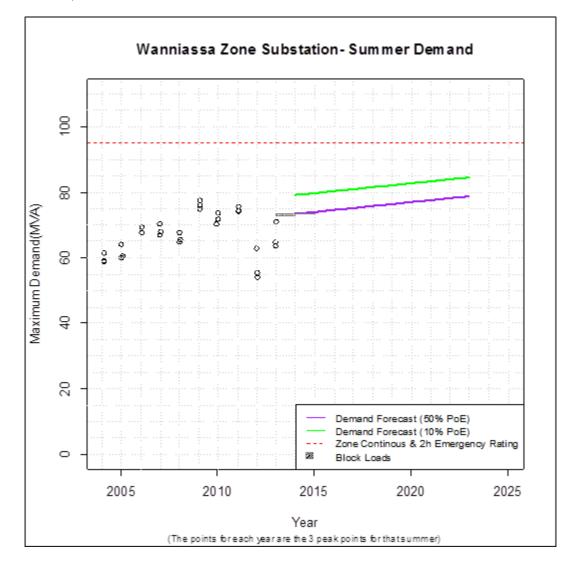
Model Coefficients				
	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	-1163.1431	465.8738	-2.497	0.0189
Year	0.6007	0.2318	2.591	0.0152
CDD	2.7275	0.3659	7.454	5.11E-08
Residual standard error: 3.6	4 on 27 degrees of 1	freedom	•	
Multiple R-squared: 0.6898,	Adjusted R-squa	red: 0.6668		
F-statistic: 30.02 on 2 and 2	7 DF, p-value: 1.37	1e-07		

ActewAGL 200


for you

The model is scrutinized to ensure that it is suited for the data. For e.g. diagnostic checking of residuals, normal Q-Q plots, leverage plots, VIF, and a number of other methods are used. Attached below are some diagnostic graphs supporting the model.

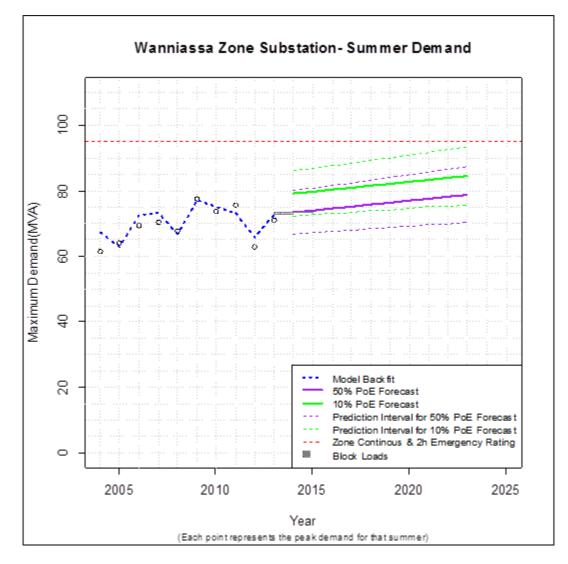
130


2) Graph and statistics assessing the back-fit accuracy of the model. The back-fit forecast is compared to the single highest peak demand point from each year.

ActewAGL 800

Year	Wanniassa Peak (MVA)	Back-fit using actual temp (MVA)	Deviation of Backfit from actual	Deviation Magnitude
2004	61.51	67.13	9%	9%
2005	64.09	62.96	-2%	2%
2006	69.45	72.42	4%	4%
2007	70.29	73.16	4%	4%
2008	67.75	66.67	-2%	2%
2009	77.49	76.95	-1%	1%
2010	73.74	75.24	2%	2%
2011	75.63	73.11	-3%	3%
2012	62.88	65.80	5%	5%
2013	71.11	72.81	2%	2%
		Average	<u>2%</u>	<u>3%</u>

Final Model/Forecast (including block loads):


3) Graph and table showing the final forecast (incorporating potential future block loads).

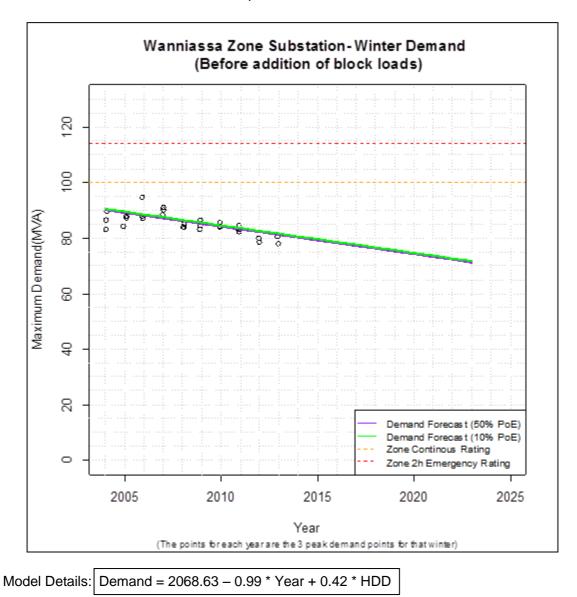
Actew/AGL	200
f	or you

Final Fore	Final Forecast (Incorporating Block Loads)					
Summer ending Feb	50% PoE (in MVA)	10% PoE (in MVA)				
2014	73.4	79.1				
2015	74.0	79.7				
2016	74.6	80.3				
2017	75.2	80.9				
2018	75.8	81.5				
2019	76.4	82.1				
2020	77.0	82.7				
2021	77.6	83.3				
2022	78.2	83.9				
2023	78.8	84.5				

4) Graph used in reports/for presentation (incorporating potential future block loads)

Supporting Document: Block Load Data

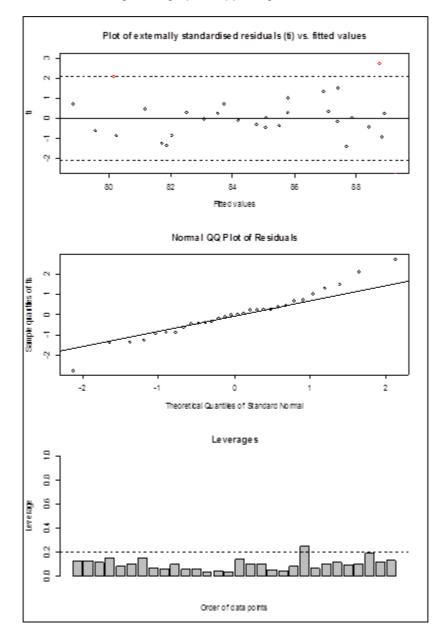
Development type	Supply source feeder	Supply source zone sub	Expected ADMD Increase (MVA)	Supply Required Date	Project probability
Commercial & industrial	Fincham	Wanniassa	0.1	19/02/2013	100%
Commercial	Langmore Feeder 3	Wanniassa	0.425	7/05/2013	100%
SCR	Hawkesbury Feeder	Wanniassa	0.1	1/01/2015	10%

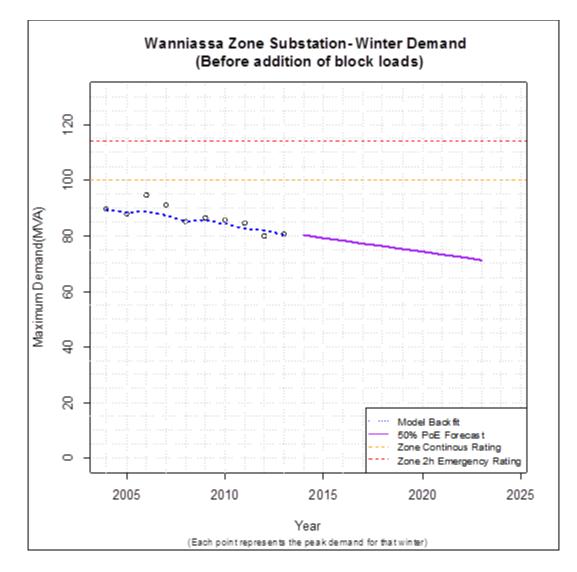


5.11.2 Wanniassa Zone Winter Forecast

Model Selection: Model with variables Year and HDD, selected based on stepwise procedures and checking against other statistical criteria. HDD is marginally significant.

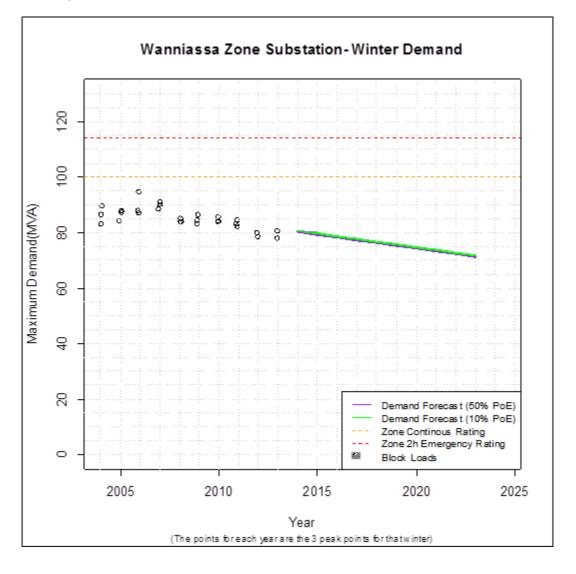
Model/Forecast (before adding block loads):


1) Graph showing historical demand, the 10% and 50% PoE 10-year forecasts, and back-fit showing what historical demand the model would forecast given 10% and 50% PoE weather conditions in the past.


Model Coefficients					
Model Coefficients	Estimate	Std. Error	t value	Pr(> t)	
(Intercept)	2068.6275	337.1811	6.135	0.0000148	
Year	-0.99	0.1677	-5.902	0.00000274	
HDD	0.4219	0.233	1.811	0.0813	
Residual standard err	or: 2.624 on 27 degrees	of freedom	1		
Multiple R-squared: 0.	.6017, Adjusted R-sq	uared: 0.5722			
F-statistic: 20.4 on 2	and 27 DF, p-value: 4.0	06e-06			

Actew/AGL 200

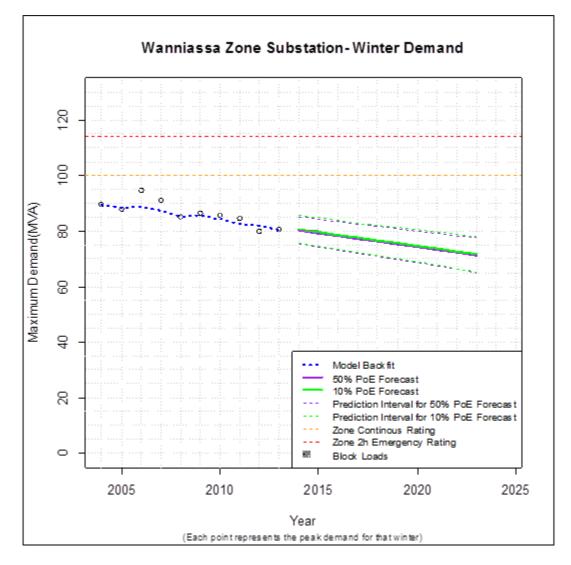
The model is scrutinized to ensure that it is suited for the data. For e.g. diagnostic checking of residuals, normal Q-Q plots, leverage plots, VIF, and a number of other methods are used. Attached below are some diagnostic graphs supporting the model.


2) Graph and statistics assessing the back-fit accuracy of the model. The back-fit forecast is compared to the single highest peak demand point from each year.

Actev/AGL 200 for you

Year	Wanniassa Peak (MVA)	Back-fit using actual temp (MVA)	Deviation of Backfit from actual	Deviation Magnitude
2004	89.52	89.27	0%	0%
2005	88	88.41	0%	0%
2006	94.69	88.75	-6%	6%
2007	91.05	87.42	-4%	4%
2008	85.22	85.08	0%	0%
2009	86.49	85.78	-1%	1%
2010	85.59	84.18	-2%	2%
2011	84.65	82.51	-3%	3%
2012	79.88	82.03	3%	3%
2013	80.5	80.24	0%	0%
		Average	<u>-1%</u>	<u>2%</u>

Final Model/Forecast (including block loads):


3) Graph and table showing the final forecast (incorporating potential future block loads).

Actew/AGL	200
f	or you

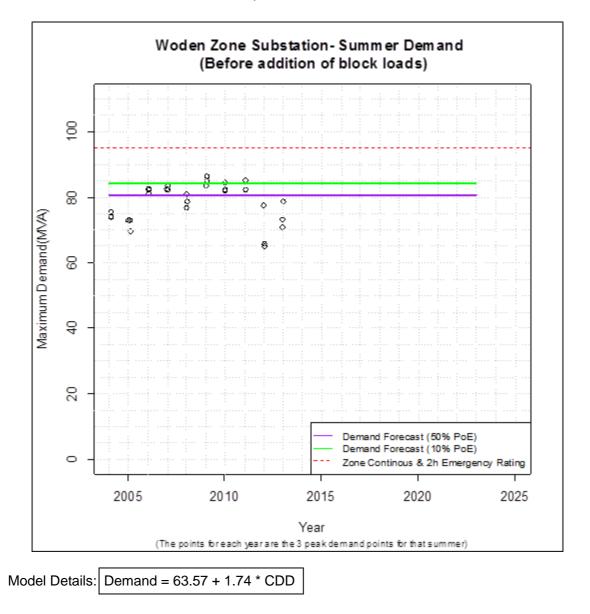
Final Forecast (Incorporating Block Loads)			
Winter Ending Aug	50% PoE (in MVA)	10% PoE (in MVA)	
2014	80.2	80.6	
2015	79.3	79.6	
2016	78.3	78.6	
2017	77.3	77.6	
2018	76.3	76.6	
2019	75.3	75.6	
2020	74.3	74.6	
2021	73.3	73.7	
2022	72.3	72.7	
2023	71.3	71.7	

4) Graph used in reports/for presentation (incorporating potential future block loads)

Supporting Document: Block Load Data

Development type	Supply source feeder	Supply source zone sub	Expected ADMD Increase (MVA)	Supply Required Date	Project probability
SCR	Hawkesbury Feeder	Wanniassa	0.1	1/01/2015	10%

ActewAGL 200 for you

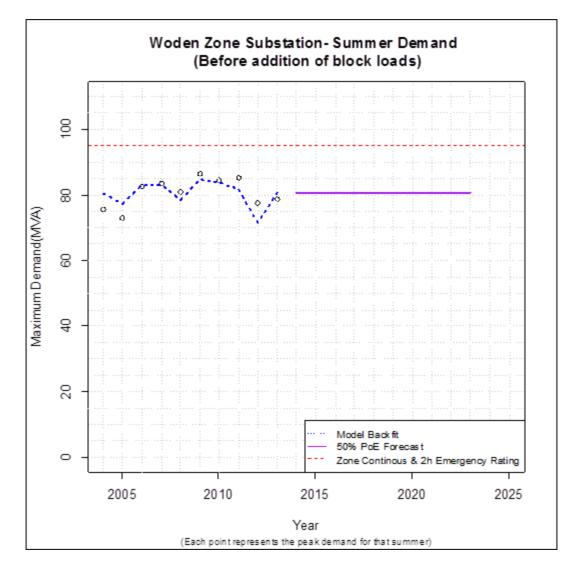

5.12 Woden Zone

5.12.1 Woden Zone Summer Forecast

Model Selection: Model with variable CDD selected based on stepwise procedures and checking against other statistical criteria. Originally chosen model with variables MaxTemp and CDD was rejected because the coefficients were unreasonable.

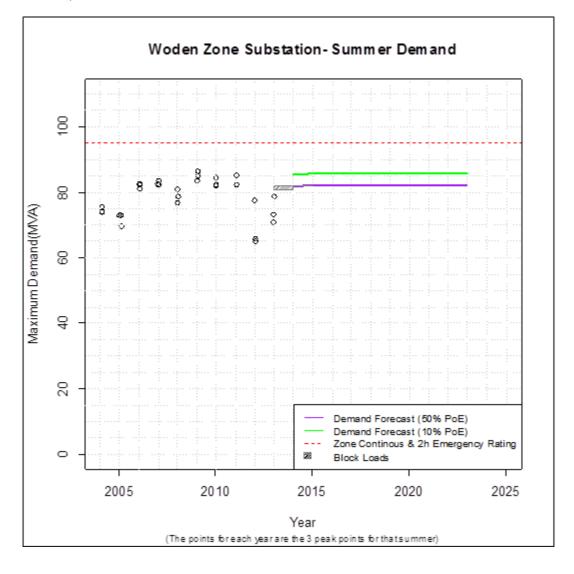
Model/Forecast (before adding block loads):


1) Graph showing historical demand, the 10% and 50% PoE 10-year forecasts, and back-fit showing what historical demand the model would forecast given 10% and 50% PoE weather conditions in the past.



Model Coefficients					
	Estimate	Std. Error	t value	Pr(> t)	
(Intercept)	63.5653	2.9778	21.346	< 2e-16	
CDD	1.736	0.3347	5.187	0.0000166	
Residual standard error: 4.232 on 28 degrees of freedom					
Multiple R-squared: 0.4901, Adjusted R-squared: 0.4719					
F-statistic: 26.91 on 1 and 28 DF, p-value: 1.661e-05					

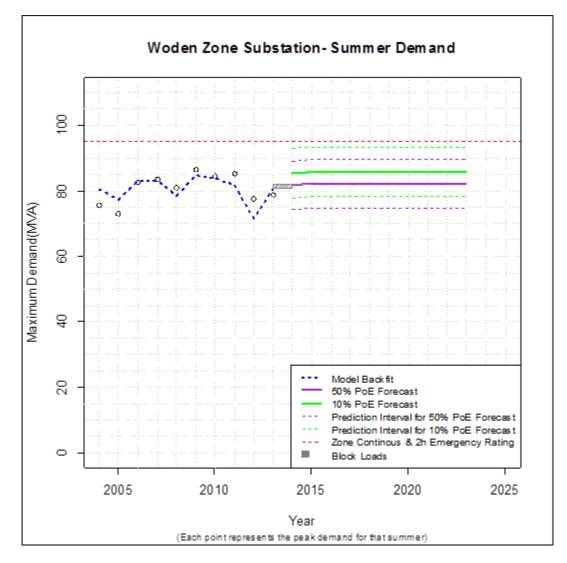
The model is scrutinized to ensure that it is suited for the data. For e.g. diagnostic checking of residuals, normal Q-Q plots, leverage plots, VIF, and a number of other methods are used. Attached below are some diagnostic graphs supporting the model.


2) Graph and statistics assessing the back-fit accuracy of the model. The back-fit forecast is compared to the single highest peak demand point from each year.

Actev/AGL 800 for you

Year	Woden Peak (MVA)	Back-fit using actual temp (MVA)	Deviation of Backfit from actual	Deviation Magnitude
2004	75.71	80.40	6%	6%
2005	73.05	77.37	6%	6%
2006	82.45	83.01	1%	1%
2007	83.43	83.10	0%	0%
2008	80.87	78.58	-3%	3%
2009	86.34	84.74	-2%	2%
2010	84.51	83.79	-1%	1%
2011	85.09	81.53	-4%	4%
2012	77.49	71.55	-8%	8%
2013	78.8	80.58	2%	2%
		Average	<u>0%</u>	<u>3%</u>

Final Model/Forecast (including block loads):


3) Graph and table showing the final forecast (incorporating potential future block loads).

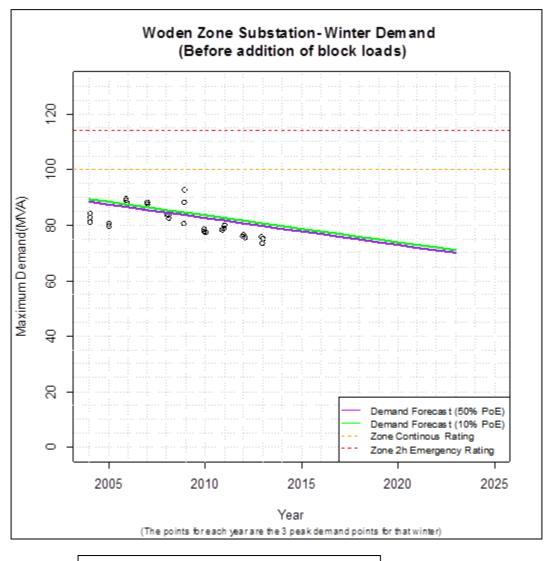
Actew/AGL	200
f	or you

Final Forecast (Incorporating Block Loads)					
Summer ending Feb	50% PoE (in MVA)	10% PoE (in MVA)			
2014	81.7	85.4			
2015	82.0	85.7			
2016	82.0	85.7			
2017	82.0	85.7			
2018	82.0	85.7			
2019	82.0	85.7			
2020	82.0	85.7			
2021	82.0	85.7			
2022	82.0	85.7			
2023	82.0	85.7			

4) Graph used in reports/for presentation (incorporating potential future block loads)

Supporting Document: Block Load Data

Development type	Supply source feeder	Supply source zone sub	Expected ADMD Increase (MVA)	Supply Required Date	Project probability
Commercial	Yarralumla Feeder	Woden	0.1	11/06/2013	10%
Residential Development	Deakin No.2 Feeder	Woden	0.12	14/08/2013	100%
Residential Development	Cotter Feeder	Woden	0.45	29/08/2013	100%
Residential Development	Easty Feeder	Woden	0.65	19/09/2013	90%
Commercial Development	Phillip North Feeder	Woden	2	1/01/2015	10%
Commercial Development	Wilson Feeder 2	Woden	0.255	1/01/2015	10%
Commercial Development	Theodore Feeder	Woden	0.08	1/01/2015	90%

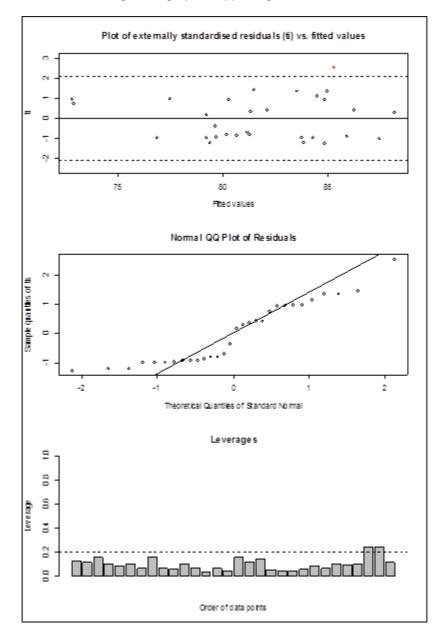


5.12.2 Woden Zone Winter Forecast

Model Selection: Model with variables Year and HDD, selected based on stepwise procedures and checking against other statistical criteria. Originally chosen model with variables Year, MinTemp and HDD was rejected because the coefficients were unreasonable.

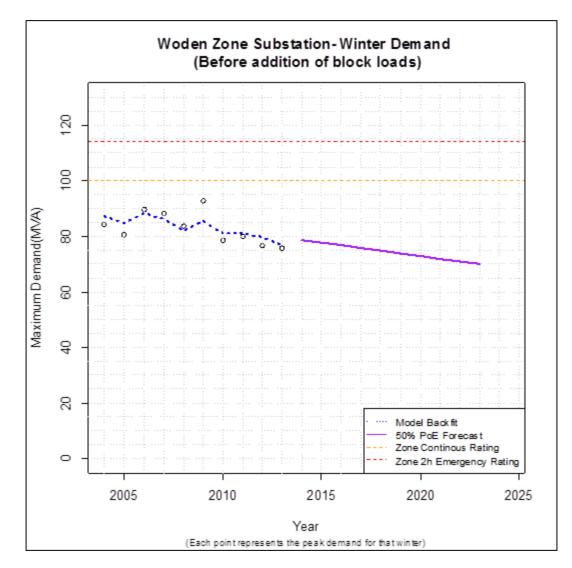
Model/Forecast (before adding block loads):

1) Graph showing historical demand, the 10% and 50% PoE 10-year forecasts, and back-fit showing what historical demand the model would forecast given 10% and 50% PoE weather conditions in the past.


Model Details: Demand = 2017.19 - 0.97 * Year + 1.22 * HDD

Model Coefficients						
	Estimate	Std. Error	t value	Pr(> t)		
(Intercept)	2017.1946	462.544	4.361	0.000169		
Year	-0.9704	0.23	-4.219	0.000247		
HDD	1.2201	0.3779	3.229	0.003255		
Residual standard error: 3.5	39 on 27 degrees o	f freedom				
Multiple R-squared: 0.5439, Adjusted R-squared: 0.5102						
F-statistic: 16.1 on 2 and 27 DF, p-value: 2.493e-05						

ActewAGL 200


for you

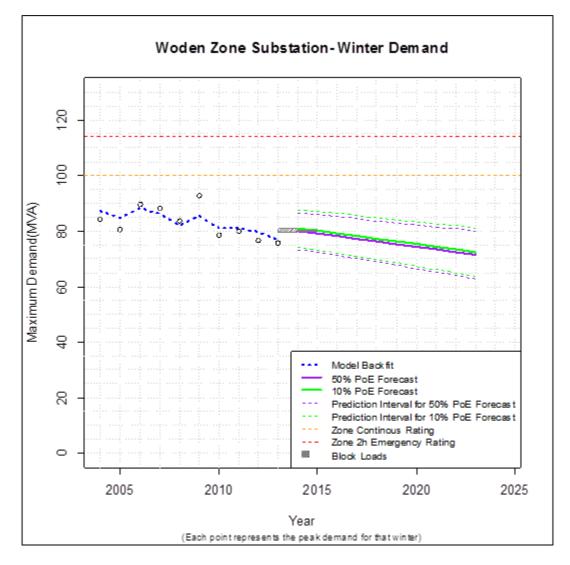
The model is scrutinized to ensure that it is suited for the data. For e.g. diagnostic checking of residuals, normal Q-Q plots, leverage plots, VIF, and a number of other methods are used. Attached below are some diagnostic graphs supporting the model.

148


2) Graph and statistics assessing the back-fit accuracy of the model. The back-fit forecast is compared to the single highest peak demand point from each year.

Year	Woden Peak (MVA)	Back-fit using actual temp (MVA)	Deviation of Backfit from actual	Deviation Magnitude
2004	84.12	87.43	4%	4%
2005	80.6	84.82	5%	5%
2006	89.57	88.18	-2%	2%
2007	88.18	86.23	-2%	2%
2008	83.63	82.09	-2%	2%
2009	92.87	85.27	-8%	8%
2010	78.46	81.25	4%	4%
2011	79.86	81.13	2%	2%
2012	76.55	79.67	4%	4%
2013	75.79	76.81	1%	1%
		Average	<u>1%</u>	<u>3%</u>

Final Model/Forecast (including block loads):


3) Graph and table showing the final forecast (incorporating potential future block loads).

Actew/AGL	200
1	for you

Final Fore	Final Forecast (Incorporating Block Loads)					
Winter Ending Aug	50% PoE (in MVA)	10% PoE (in MVA)				
2014	79.9	80.8				
2015	79.2	80.2				
2016	78.2	79.2				
2017	77.2	78.2				
2018	76.3	77.3				
2019	75.3	76.3				
2020	74.3	75.3				
2021	73.4	74.3				
2022	72.4	73.4				
2023	71.4	72.4				

4) Graph used in reports/for presentation (incorporating potential future block loads)

Supporting Document: Block Load Data

Development type	Supply source feeder	Supply source zone sub	Expected ADMD Increase (MVA)	Supply Required Date	Project probability
Residential Development	Deakin No.2 Feeder	Woden	0.12	14/08/2013	100%
Residential Development	Cotter Feeder	Woden	0.45	29/08/2013	100%
Residential Development	Easty Feeder	Woden	0.65	19/09/2013	90%
Commercial Development	Phillip North Feeder	Woden	2	1/01/2015	10%
Commercial Development	Wilson Feeder 2	Woden	0.255	1/01/2015	10%
Commercial Development	Theodore Feeder	Woden	0.08	1/01/2015	90%

5.13 Block Loads Data

The way that block loads are accounted for are explained in the example below:

Summer – all block loads falling between 15 Jan 2014 and 15 Jan 2015 are included in the 2015 forecast.

Winter – all block loads falling between 15 July 2014 and 15 July 2015 are included in the 2015 forecast.

*Block loads that are "completed" before 15 Jan 2013 are not included in the summer forecasts, block loads that are "completed" before 15 July 2013 are not included in the winter forecasts.

All data on block (spot) loads are provided in the table below.

Development type	Supply source feeder	Supply source zone sub	Expected ADMD Increase (MVA)	Supply required date	Project probability
Residential &	Eardley	Belconnen	0.06	17/06/2013	100%
Commercial	Feeder				
Development					
Residential	Meacham	Belconnen	0.06	17/09/2013	100%
Development	Feeder				
Commercial	Eardley	Belconnen	3	1/01/2015	50%
Development	Feeder & Joy				
	Commins				
	Feeder				
Residential &	Cameron	Belconnen	2	1/02/2015	40%
Commercial	North feeder				
Development					
Commercial	Lonsdale	CityEast	0.1	13/06/2013	100%
Development	Feeder				
Residential &	wolsley	CityEast	0.5	12/12/2013	90%
Commercial	Feeder				
Development					
Community	Chisholm	CityEast	0.125	1/02/2014	10%
development	Feeder				
Residential	Wakefield	CityEast	0.07	1/01/2015	90%
Development	Feeder 3				
Commercial	Dryandra	Civic	0.18	14/08/2013	100%
	Feeder				
Residential &	Wattle Feeder	Civic	0.246	16/09/2013	100%
Commercial					
Development					
Residential	Wattle Feeder	Civic	0.07	1/01/2015	90%
Development					
Commercial &	Collie Fdr	Fyshwick	0.05	20/02/2013	100%
industrial					

Development type	Supply source feeder	Supply source zone sub	Expected ADMD Increase (MVA)	Supply required date	Project probability
Commercial	Abattoir feeder	Fyshwick	0.086	20/03/2013	100%
Residential Development	Newcastle feeder 1	Fyshwick	0.2	5/04/2013	100%
Commercial	Domayne Feeder 1	Fyshwick	0.075	6/05/2013	100%
Commercial Development	Abattoir feeder	Fyshwick	0.225	16/08/2013	100%
Commercial	Barrier Feeder	Fyshwick	0.063	12/12/2013	90%
Commercial & industrial	Monaro Feeder 2	Gilmore	0.066	5/02/2013	100%
Commercial & industrial	Monaro Feeder	Gilmore	0.32	20/03/2013	100%
Residential Development	Nona 2	GoldCreek	0.05	23/03/2013	100%
Commercial Development	West Feeder	GoldCreek	0.055	15/05/2013	100%
	Anthony Rolfe	GoldCreek	0.22	21/06/2013	100%
Community Development	Gribble feeder	GoldCreek	0.14	8/07/2013	100%
Commercial Development	Riley Feeder	GoldCreek	0.171	26/07/2013	100%
Commercial Development	Gungahlin Feeder	GoldCreek	0.15	16/08/2013	90%
Residential Development	Magenta Feeder	GoldCreek	0.06	16/08/2013	100%
Commercial & industrial	Gungahlin	GoldCreek	0.115	1/10/2013	10%
Residential & Commercial Development	Anthony Rolfe	GoldCreek	0.35	2/10/2013	100%
Commercial & industrial	Gurrang	GoldCreek	0.25	3/10/2013	100%
Commercial	Gungahlin Feeder	GoldCreek	0.15	30/10/2013	40%
Commercial Development	Gribble feeder	GoldCreek	0.18	31/10/2013	100%
Residential Development	Anthony Rolfe Feeder	GoldCreek	0.065	13/11/2013	100%
Commercial & industrial	Gungahlin / Gribble Feeder	GoldCreek	0.7	28/11/2013	100%
Commercial Development	Gribble feeder	GoldCreek	0.9	3/01/2014	90%
Residential & Commercial	Gurrang Feeder	GoldCreek	0.315	2/02/2014	90%

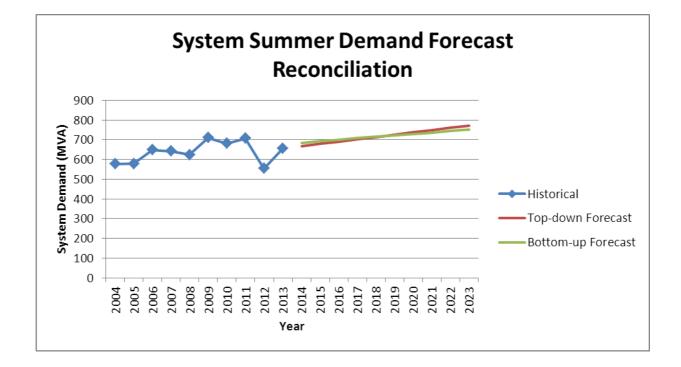
Development type	Supply source feeder	Supply source zone sub	Expected ADMD Increase (MVA)	Supply required date	Project probability
Development					
Commercial	Saunders	GoldCreek	0.144	1/01/2015	10%
Development	Feeder		-	, , , , , , , , , , , , , , , , , , , ,	
Residential	Nona Feeder	GoldCreek	0.475	1/01/2015	10%
Development					
Commercial &	Bowley Feeder	Latham	0.13	20/02/2013	100%
industrial					
Commercial &	Tillyard Feeder	Latham	0.225	17/04/2013	100%
industrial	-				
Residential	Verbrugghen	Latham	0.02	21/05/2013	100%
Development	Feeder (1)				
Residential &	Patrick Feeder	Latham	0.077	27/06/2013	100%
Commercial					
Development					
Commercial	Bowley Feeder	Latham	0.13	1/01/2015	10%
Development					
Commercial	Fielder Feeder	Latham	0.08	1/01/2015	10%
Development					
Commercial	Patrick Feeder	Latham	0.13	1/01/2015	90%
Development	2				
Residential	Strzelecki	TelopeaPark	0.065	15/04/2013	100%
Development	Feeder				
Residential	Monash	TelopeaPark	0.24	16/04/2013	100%
Development	Feeder				
Residential	Monash	TelopeaPark	0.24	22/04/2013	100%
Development	Feeder				
Commercial	Sandalwood	TelopeaPark	0.06	13/05/2013	100%
	Feeder				
Commercial	Forester	TelopeaPark	0.06	14/08/2013	100%
	Feeder				
Residential	Monash	TelopeaPark	0.5	20/05/2014	95%
Development	Feeder				
Commercial	Mundaring	TelopeaPark	1.4	15/07/2014	90%
	Feeder	.	0.04	4/00/2011	0.001
Commercial	Young feeder	TelopeaPark	0.31	1/08/2014	90%
Commercial	Giles St	TelopeaPark	0.55	1/01/2015	10%
Development	Feeder	Talawa D. J	0.00	4/04/2015	400/
Residential	Jardine Feeder	TelopeaPark	0.06	1/01/2015	10%
Development	Circola area	14/0	0.1	10/02/2012	1000/
Commercial &	Fincham	Wanniassa	0.1	19/02/2013	100%
industrial	Langmara	Manniaga	0.425	7/05/2012	100%
Commercial	Langmore Feeder 3	Wanniassa	0.425	7/05/2013	100%
SCR	Hawkesbury Feeder	Wanniassa	0.1	1/01/2015	10%

Development type	Supply source feeder	Supply source zone sub	Expected ADMD Increase (MVA)	Supply required date	Project probability
Commercial	Yarralumla Feeder	Woden	0.1	11/06/2013	10%
Residential Development	Deakin No.2 Feeder	Woden	0.12	14/08/2013	100%
Residential Development	Cotter Feeder	Woden	0.45	29/08/2013	100%
Residential Development	Easty Feeder	Woden	0.65	19/09/2013	90%
Commercial Development	Phillip North Feeder	Woden	2	1/01/2015	10%
Commercial Development	Wilson Feeder 2	Woden	0.255	1/01/2015	10%
Commercial Development	Theodore Feeder	Woden	0.08	1/01/2015	90%

6. Reconciliation between forecasts

This section shows the comparison of the top-down system forecast, with a bottom-up system forecast. The bottom-up forecast has been derived by summing the individual zone forecast, and taking loss factors and diversity factors into account.

The difference between the summer top-down and bottom-up forecasts is $\pm 3\%$, while the difference in the winter forecast is 5% in the early years and up to 10% by the end of the forecast period.

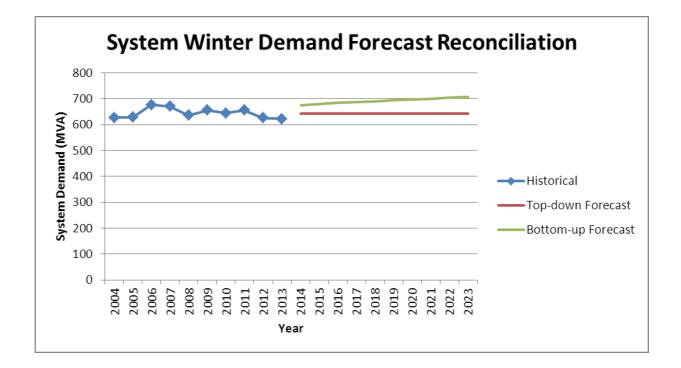

6.1 Loss Factors

The summer and winter system peaks were compared to the sum of the demand at each zone substation at the time of the system peaks. While complete data was not available for each year, this analysis showed that the losses on the ActewAGL transmission network at the time of the system peak were in the range of 7 to 10 %. This may be different to the average loss factors calculated for other purposes.

6.2 Diversity Factors

	Average Diversity Factor (load on the zone at the time of system peak demand, as a percentage of the zone peak demand)	
Zone	Summer	Winter
Belconnen	99%	100%
City East	99%	99%
Civic	98%	77%
Fyshwick	93%	57%
Gilmore	91%	95%
Gold Creek	84%	95%
Latham	83%	96%
Telopea Park	98%	94%
Theodore	76%	95%
Wanniassa	95%	98%
Woden	97%	99%

ActewAGL 200 for you


6.3 Summer Demand Forecast

				Deviation of Top- down forecast
	System Summer Peak Demand (MVA) Top- Bottom-			from Bottom-up
		down	up	System Forecast
Year	Historical	Forecast	Forecast	
2004	577.4			
2005	579.2			
2006	648.2			
2007	642.7			
2008	623.5			
2009	711.2			
2010	681.5			
2011	707.1			
2012	555			
2013	656			
2014		667.1	682.3	2%
2014		007.1	002.0	2%
2015		678.9	693.6	
2016		690.9	700.9	1%
2010		000.0	700.5	1%
2017		702.6	708.1	170
2018		714.3	715.4	0%
				0%
2019		726.1	722.6	-1%
2020		737.8	729.9	
2021		749.5	737.1	-2%
2022		761.1	744.4	-2%
2023		772.7	751.6	-3%

159

ActewAGL 200

ActewAGL 800 for you

6.4 Winter Demand Forecast

	System Winter Peal	(Demand (Μ\/Δ)	Deviation of Top-down forecast from Bottom-up
	Top- Bottom-		System Forecast	
		down	up	
Year	Historical	Forecast	Forecast	
2004	627.6			
2005	628.5			
2006	677			
2007	671			
2008	636.6			
2009	655.6			
2010	645			
2011	656.3			
2012	626.3			
2013	622.9			
2014		643.1	674.7	5%
2015		643.1	681.1	6%
2016		643.1	684.5	6%
2017		643.1	687.8	7%
2018		643.1	691.1	7%
2019		643.1	694.4	8%
2020		643.1	697.8	9%
2021		643.1	701.1	9%
2022		643.1	704.4	10%
2023		643.1	707.8	10%

ActewAGL 200 for you

7. Responses to other items in RIN Schedule 1 section 8

The following table provides responses to items relating to forecasts of maximum demand that have not been covered by the information contained in the preceding sections of this attachment.

Ref	Schedule 1 requirement	ActewAGL Distribution response
8.2(b)	Provide where ActewAGL's approach to weather <i>correction</i> has changed, provide historically consistent weather corrected <i>maximum</i> <i>demand</i> data, as per the format in <i>regulatory templates</i> 5.3 and 5.4 using ActewAGL's current approach. If this data is unavailable, explain why.	The approach to weather correction has not changed.
8.3(f)	For each of the methodologies provided and described in response to paragraph 8.1, and, where relevant, data requested under 8.2(b) and 8.2(c), explain <u>any appliance models</u> , where used, or <u>assumptions relating to average <i>customer</i> energy usage (by <i>customer</i> type)</u>	No appliance model or assumptions about future average customer energy use were used. Efficiency trends are captured through the regression approach.
8.3(i)	For each of the methodologies provided and described in response to paragraph 8.1, and, where relevant, data requested under 8.2(b) and 8.2(c), explain how the forecasts resulting from these methods and assumptions have been used in determining the following: (i) capital expenditure forecasts; and (ii) operating and maintenance expenditure forecasts	Refer to Chapter 6 and Attachment D4: Distribution Annual Planning Report.
8.3(j)	For each of the methodologies provided and described in response to paragraph 8.1, and, where relevant, data requested under 8.2(b) and 8.2(c), explain whether ActewAGL used the forecasting model(s) it used in the joint planning process for the purposes of its	Forecasts were provided to TransGrid for joint planning.

Ref	Schedule 1 requirement	ActewAGL Distribution response
	regulatory proposal	
8.3(k)	For each of the methodologies provided and described in response to paragraph 8.1, and, where relevant, data requested under 8.2(b) and 8.2(c), explain <u>whether ActewAGL forecasts both coincident and</u> <u>non-coincident maximum demand at the feeder, connection point,</u> <u>subtransmission substation and zone substation level, and how</u> <u>these forecasts reconcile with the system level forecasts (including</u> <u>how various assumptions that are allowed for at the system level</u> <u>relate to the <i>network</i> level forecasts)</u>	ActewAGL Distribution does not forecast both coincident and non- coincident maximum demand at the feeder, connection point, subtransmission substation and zone substation level.
8.3(l)	For each of the methodologies provided and described in response to paragraph 8.1, and, where relevant, data requested under 8.2(b) and 8.2(c), explain <u>whether ActewAGL records historic maximum</u> <u>demand in MW, MVA or both</u>	ActewAGL Distribution generally records historic maximum demand in MVA, but also MW where power factor is measured.
8.3(m)	For each of the methodologies provided and described in response to paragraph 8.1, and, where relevant, data requested under 8.2(b) and 8.2(c), explain the probability of exceedance that ActewAGL uses in network planning	ActewAGL Distribution uses a PoE of 10% in network planning.
8.3(n)	For each of the methodologies provided and described in response to paragraph 8.1, and, where relevant, data requested under 8.2(b) and 8.2(c), explain <u>the contingency planning process, in particular</u> <u>the process used to assess high system demand</u>	Refer to Attachment D5: Distribution Network Augmentation Criteria.
8.3(o)	For each of the methodologies provided and described in response to paragraph 8.1, and, where relevant, data requested under 8.2(b) and 8.2(c), explain <u>how risk is managed across the network</u> , particularly in relation to load sharing across network elements and	Refer to Chapter 6.

Ref	Schedule 1 requirement	ActewAGL Distribution response
	non-network solutions to peak demand events	
8.3(p)	For each of the methodologies provided and described in response to paragraph 8.1, and, where relevant, data requested under 8.2(b) and 8.2(c), explain <u>whether and how the <i>maximum demand</i></u> forecasts underlying the <i>regulatory proposal</i> reconcile with any demand information or related planning statements published by <u>AEMO</u> , as well as forecasts produced by any transmission network service providers connected to ActewAGL's <i>network</i>	ActewAGL Distribution was unable to find any relevant AEMO forecasts for the ACT.
8.3(q)	For each of the methodologies provided and described in response to paragraph 8.1, and, where relevant, data requested under 8.2(b) and 8.2(c), explain how the normal and emergency ratings are used in determining capacity for individual <i>zone substations</i> and <i>sub-transmission lines</i>	Refer to Attachment D16: Electrical Data Manual
8.3(r) and 8.3(s)	See Schedule 1 for detailed requirements	Refer to business cases for individual projects.
8.4(a)	Provide evidence that any independent verifier engaged has examined the reasonableness of the method, processes and assumptions in determining the forecasts and has sufficiently capable expertise in undertaking a verification of forecasts	Refer to Attachment C2: Review of demand forecast methodology.
8.4(b)	Provide all documentation, analysis and models evidencing the results of the independent verification	Refer to Attachment C2: Review of demand forecast methodology.

