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Executive Summary 
This report provides a comprehensive analysis of historical data on volumetric assets within the 
Powercor, CitiPower, and United Energy networks to forecast asset replacement volumes for the years 
2026 to 2031. This analysis was undertaken by Wei Chang and Junze Li, alumni of the Master of Business 
Analytics degree at Melbourne Business School, the graduate business school of the University of 
Melbourne, and was completed in October 2023. The report focuses on uncovering insights from 
historical data to identify variables influencing asset replacement patterns and to forecast the 
replacement volume. Volumetric assets are categorised into two primary business units: Line Assets and 
Plant Assets, each containing various asset categories with distinct characteristics. The data is further 
segmented into specific groupings for independent analysis, such as high voltage (HV) and low voltage 
(LV) crossarms, and different types of transformers (indoor, kiosk, pole top, and ground).  
The analysis follows a conventional analytics pipeline, including data preprocessing, feature selection, 
model building, model evaluation, and forecasting. As the data availability and historical trends varies 
across each asset and sub-asset classes, multiple methodology such as linear regression, averages, 
gradient boosting etc. were tested to determine the best fitting model for the corresponding group of 
assets. Line Assets has a richer dataset allowing for more sophisticated modelling, yielding deeper 
insights. In contrast, the limited data availability for Plant Assets led to relatively higher prediction errors 
in the forecasted volume numbers. 

Line Asset 

For wood poles, replacement volumes are forecasted using a decay rate model, which predicts each 
wood pole’s diameter and sound wood thickness based on features such as age, maintenance history, 
and species. This new model allows for individual predictions for each wood pole and accounts for 
changes in the decay rate as the pole ages. This represents a significant improvement over the original 
methodology, which relies mainly on categorized wood poles, and provides additional insights into asset 
decay behaviours. The utilization of rich data and advanced modelling highlights the importance of 
regular inspections and data collection. 
Replacement volumes for crossarms, insulators, and services are predicted using defect rates modelling. 
The model breaks down asset defect performance by different locations over time, allowing trends to be 
observed across various areas for each asset group. By considering location and time, the new model 
provides more confidence in predicting replacement volumes. The observed insights also consolidate 
the business’s understanding of each asset group, allowing targeted inspections and maintenance plans 
for specific locations. 



 

 

Plant Asset 
The analysis of transformers and switchgear focuses on predicting asset defect rates and asset 
populations of each asset subclass, a two-step prediction before getting to the replacement volume. The 
reliability of this statistical analysis heavily depends on the variability of the limited data that was 
available. For transformers, the historical defect rate for the PAL network demonstrates more 
consistency compared to the CP network, leading to a more reliable prediction with lower relative error. 
When comparing transformer subclasses, pole top transformers show the lowest and most consistent 
defect rate, providing a more dependable result. Further investigation into oil leak related defects 
reduced variation, serving as a reliable lower bound for replacement volume forecast. 
Switchgear followed a similar analysis although due to limited data an average of the 3-year historical 
defect rate was used for all switchgear subclasses.  
 
To reduce the two-step prediction error, asset population estimates can be enhanced by incorporating 
additional information, such as upcoming projects and future housing data. This approach helps mitigate 
the errors identified in the two-step prediction process. Additionally, leveraging data related to 
equipment specifications, environmental conditions, and loading conditions will further enhance the 
predictive capabilities for transformer and switchgear defects. 
 
Time series analysis was conducted for underground asset classes using data spanning 72-months. The 
monthly aggregated data did not show a clear trend. 
 
Therefore, while several predictions were obtained within the plant asset class, careful attention should 
be paid to model validity, and adopting the recommendations outlined in the report for future 
refinement is encouraged.  
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1. Background 

This report undertakes a comprehensive analysis of historical data pertaining to volumetric assets within the 
Powercor, CitiPower, and United Energy networks. The objective is to forecast asset replacement volumes for 
the years 2026 to 2031, a crucial element for the upcoming submission and review with the Australian Energy 
Regulator (AER). Network assets naturally deteriorate over time and through use. This deterioration can 
compromise the condition of the asset and increase the risk of asset failure leading to disruptions affecting 
safety and network reliability. Timely replacement is essential to maintain networks’ reliability.  

The aim of this analysis is to harness insights from historical data, thereby uncovering the insights and variables 
that influence asset replacement patterns. The volumetric asset is segmented into two distinct business units: 
Line Assets and Plant Assets. Within each business unit, diverse asset categories exist, where variations of 
characteristics are also present within each asset class. Consequently, the data is further organized into 
groupings, facilitating independent analysis. For instance, within the category of wooden crossarms, further 
subdivisions consider high voltage (HV) and low voltage (LV) crossarms, while transformers are categorized into 
indoor, kiosk, pole top, and ground transformers. Each of these groupings is subject to individualized analysis, 
with their findings thoroughly documented in the report. 

The outcome variable varies depending on the data availability for each asset grouping. Ultimately, the 
overarching objective remains constant—forecasting asset replacement volumes. The analysis approach 
differs, contingent upon the nature of the asset. For instance, assets like poles are scrutinized at an individual 
equipment level, with a focus on understanding the decay rate. In contrast, assets subject to rigorous 
inspection programs are assessed in terms of the defect find rate.  

This report is focused on exploring and identifying the most suitable forecasting method or model for each 
asset classes. These techniques are carefully outlined in the context of its capabilities and constraints. 
Furthermore, to achieve the most dependable and accurate forecast values, the associated error with each 
methodology is presented. This transparency allows for a thorough understanding of the reliability and 
precision of the forecasting process, contributing to well-informed decisions. It's important to note that this 
report concentrates on the methodology, and the output data may evolve as improved data is incorporated. 
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2. Data Exploration and Methodology 
2.1. Data Exploration 
There are two major categories of assets: Line Assets and Plant Assets. Each category exhibits distinct 
characteristics, is managed by a different team, and follows a unique data collection process. Due to these 
differences, Line Asset and Plant Asset are processed and analysed separately. The following sections provide 
a high-level summary of each asset group and outline the key characteristics of each asset. 

2.1.1. Line Assets 
Line assets comprise four types: wood poles, crossarms, insulators, and service lines, which are distributed and 
managed by CP, PAL, and UE. 

For wood poles, detailed equipment feature data is available. This includes measurements of sound wood 
thickness (available for CP, PAL, and UE) and wood pole original diameters (available for CP and PAL), tracked 
over time. The features considered to have a significant impact on equipment durability and decay behavior 
include: 

• Pole species (e.g. messmate) 
• Pole type (e.g. wood untreated dress)  
• Pole classification (e.g. durability class 1) 
• Age group (e.g. 51-60 years) 

For crossarms, insulators, and service lines, equipment feature data, inspection data, and defect notification 
data are accessible for CP and PAL. UE lacks inspection data at asset class level; however, the inspections of 
these assets can be correlated with the pole inspections, for which data is available. For these three assets, 
impactful features include: 

• Location (maintenance planner group) 
• Year 

Forecast inspection volumes are also available for all line assets. 

2.1.2. Plant Assets 
Plant Assets comprise of three main types: transformers, switchgear, and underground assets, which are 
distributed and managed by CP, PAL, and UE.  

For transformers and switchgear, all three networks have access to 

• Defect Notification Data 
• Asset Population Data  

For CP and PAL, these datasets provide the necessary granularity to classify assets into their respective 
subclasses. Each subclass exhibits distinct characteristics, and thus analysed separately. However, UE lacks the 
subclass granularity, thus was analysed on an asset level without diving down into the subclasses.  

Asset Type Asset Subclass 
Transformer Pole top, Kiosk, Indoor, Ground 
Switchgear ACR, Air Break- Indoor, Air Break - Pole, Gas Switch - Pole, HV Isolator, LV Circuit Breaker, 

RMU (Ring Main Unit) 
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In transformer analysis, defect notification data provides insights into the reason behind defects. Since oil 
leakage can have a significant implication for transformers, the defect notifications that were linked to leakage 
have a separate analysis. Similarly, this detailed analysis only applies for CP and PAL as the UE data did not 
provide this level of detail.   

For the switchgear analysis, it is important to note that the asset population data offers a snapshot as of 2023 
for all three networks. Details regarding how the absence of the population data is dealt with are outlined in 
the Data Cleaning in 2.2.1. All switchgear defect notifications regardless of the reason are treated equally in 
the analysis for all networks.  

Underground assets comprise various associated classes: subtransmission cable, HV cable, LV cable, pits, and 
pillar. Defect notification data serves as the foundation for analysis across all networks where a time series 
analysis was conducted to forecast the replacement volume. Subtransmission cable analysis pertains only to 
CP and PAL networks. 

2.2. Analytics Pipeline 
Taking into consideration variations in data availability and asset characteristics, we explored various 
outcome variables to predict replacement volumes. Each outcome variable requires a distinct 
methodology to achieve the goal of forecasting replacement volume.  

We followed the conventional analytics pipeline (Figure 1) to forecast the respective outcome variable, 
which will be discussed in this section. This process includes key stages such as data preprocessing, feature 
selection, model building, model evaluation, and finally forecasting and extracting insights from the 
chosen best model. Adjustments are made to align with the unique data and characteristics of each asset, 
utilizing diverse techniques tailored to their specific contexts. The following section will offer an in-depth 
exploration of each technique, outlining their advantages and limitations. 

 

Figure 1: Data Analytics Pipeline 

2.2.1. Outcome Variable  
Decay Rate 
The decay rate signifies the unit/percentage decrease in measurement per year, specifically relevant to 
wood poles. Utilizing historical data to understand the features contributing to decay provides insights 
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into the factors influencing deterioration. Applying this understanding to the entire population enables 
the forecasting of replacement volumes for wood poles. 

Defect Find Rate 
The defect find rate is defined as the number of defects found per number of inspections conducted. This 
outcome variable is applicable to asset classes with a standardized inspection program and documented 
inspection data. By considering the defect find rate in conjunction with future inspections, we can 
estimate the replacement volume for the specific asset class of interest. 

Asset Defect Rate 
The asset defect rate is defined as the number of defects per total asset population. This outcome variable 
is relevant for asset classes with available asset population data and a consistent trend in the change of 
asset population. To determine the replacement volume based on the asset defect rate, the defect rate 
is multiplied by the estimated future asset population. It's crucial to highlight that the future asset 
population is either forecasted or explicitly stated within the business context. 

Defect Volume 
Defect volume is the number of defects identified. This is suitable for asset classes where only the defect 
notification is available. The defect volume is particularly relevant for underground assets, and the 
forecasted defect volume is utilized as an indicator for replacement volume. 

Defect (binary variable) 
The "defect" is a binary variable used to predict the probability of a defect based on a set of asset 
characteristics. This outcome variable is well-suited for asset classes with a comprehensive set of features. 
Setting a threshold for the probability of a defect allows the forecasting of the replacement volume for 
the specific asset class of interest. 

Given the characteristics of the assets and the available data, the table below outlines the specific 
outcome variable modeled for each asset class. 

Asset Class Outcome Variable 
Line Asset: Wood Poles Decay Rate 
Line Asset: Crossarms, Insulators, Services Defect Find Rate, Defect (binary) 
Plant Asset: Transformers Asset Defect Rate 
Plant Asset: Switchgear Asset Defect Rate 
Plant Asset: Underground  assets  Defect Volume 

Table 1: Outcome Variable Selection for each Asset Class 

2.3. Data Preprocessing 
To prepare the data for analysis, the data preprocessing is a crucial step to ensure the integrity and 
reliability of the dataset. Key steps include standardizing data for uniformity, imputing missing values for 
dataset completeness, and managing irrelevant or outlier data to ensure robustness in subsequent 
analyses. These measures collectively contribute to a clean and high-quality dataset, fostering more 
accurate and reliable insights. 

2.3.1. Line Asset 
Wood Pole Decay Rate Model: 
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• Construction Year between 1900 and 2022 
• Decay in measurements needs to be positive. 
• Time difference between inspections for the same equipment needs to be at least one year. 
• Measurement date needs to be later than construction year. 
• Unknown wood pole class is replaced by Class 3. 

For sound wood thickness, we required: 

• Sound wood thickness needs to be less than 200. 

For diameter: 

• For CP and PAL diameter data, if there is inconsistency between measurements of the same 
equipment (i.e., when the measurement increases in one of its inspections), this record is 
removed. 

Additionally, a parameter is set up such that: 

• Records with more than a certain number of years in time duration but no measurement 
changes are removed. The default set up is 10 years. 

 

2.3.2. Plant Asset 

For transformers analysis, defects associated with cover damage were omitted, considering them as 
cosmetic issues that usually do not trigger the replacement of the asset. The transformer subclass was 
also remapped accordingly using the ‘RIN_Type’ column in the Asset Population dataset. Additionally, to 
assess the influence of equipment features, defect notification data needed to be aligned with asset 
population data to determine corresponding features. Consequently, only 1327 notifications out of a total 
of 2840 defect notifications could be successfully mapped. Although the incompleteness of the data 
precluded the use of this analysis in the final forecasting method, it still provided valuable insights for 
asset management. 

For switchgear analysis, the asset population data offers a snapshot as of 2023. For CP and PAL networks, 
it is assumed that equipment installed on or before 2017 represents the 2017 population count. Newer 
installations are considered additions to this count, as they are unlikely to be decommissioned. 
Approximately 6% of the equipment (1470 pieces) lacked subclass information, which was imputed 
proportionally based on each network's population. For UE network, asset population is assumed to be 
constant from 2017 to 2023.  

For underground assets analysis, defect notifications were used. The number of defect notifications were 
aggregated monthly, and instances where the monthly defect volume exceeded the 95th percentile were 
addressed by replacing them with the average of the preceding and subsequent datapoints. If subsequent 
data was unavailable, the replacement was made using the preceding data.  
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2.4. Feature Selection 
Feature selection involves choosing the most relevant variables to enhance model performance and 
interpretability. This process aids in simplifying complex datasets by retaining only the key features that 
contribute significantly to the predictive power of the model. 

2.4.1. Variance Analysis 
ANOVA was utilized to assess the impact of various factors on dataset variability by investigating whether 
means of different groups, categorized by these factors, are statistically significantly different. Specifically 
in this project, ANOVA rigorously evaluated the significance of each factor in explaining outcomes' 
variability, with F-statistics serving as a key metric to determine significant differences in observed 
variances among groups and test the hypothesis of equal group means. 

The outcomes of ANOVA, particularly the F-statistics, were utilized for feature selection before modeling. 
These results offered insights into the relative impacts of various factors on dataset variability. The 
identified influential factors guided the decision-making process, ensuring that subsequent analysis and 
interpretations were based on robust statistical evidence. 

2.4.2. Hypothesis testing, F-test, T-test and P-value 
Hypothesis testing was central to the Variance Analysis process, providing a structured methodology to 
assess the statistical significance and validity of the model’s results. This approach included the use of F-
tests, T-tests, and P-values, each offering distinct insights into the model's robustness and the reliability 
of its parameters. 

F-test 

The F-test was utilized primarily in the context of ANOVA to assess whether the variances across multiple 
groups were equal. It was instrumental in evaluating the overall significance of the models, helping to 
ascertain whether the explanatory variables as a group were impactful in predicting the dependent 
variable. 

T-test 

T-tests were employed to assess the significance of individual parameters or coefficients in the model. It 
allowed for the evaluation of whether each variable significantly contributed to explaining variations in 
the dependent variable, offering a granular perspective on the model’s components. 

P-value 

P-values were calculated in conjunction with the F-tests and T-tests, providing a metric to gauge the 
evidence against the null hypothesis. A low P-value indicates that there is a lower probability that model’s 
accuracy happens by chance, supporting the relevance and impact of the evaluated parameters and the 
model. A significance level of 0.1 is used in this analysis. This means there is a 10% chance that the 
observed results, or more extreme ones, could occur if the null hypothesis were true. In simpler terms, 
this suggests moderate evidence that the predictive model is working. 

While a p-value of 0.1 is not conventionally considered strong evidence (as p-values of 0.05 or lower are 
typically sought after), in the complex and often unpredictable realm of asset prediction, where perfect 
predictability is nearly impossible due to data availability and numerous influencing factors, a p-value of 
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0.1 can still be indicative of a potentially useful model. It suggests that the model has a decent chance of 
capturing a true effect, which, in the challenging field of asset prediction, can be a significant step towards 
making informed decisions. 

Through the application of these hypothesis testing techniques, a rigorous validation of the models was 
conducted, ensuring that the findings are both statistically sound and practically insightful, enhancing the 
confidence in the models' predictive capabilities and overall reliability. 

2.5. Model Building 
Model building is the phase where predictive models are constructed based on the available data. It 
involves critical steps such as selecting appropriate algorithms, dividing the dataset into training and 
testing sets using techniques like test-train split, and employing cross-validation to assess the model's 
performance across multiple subsets. The objective is to create a robust and generalizable model that 
can accurately predict outcomes on new, unseen data. 

2.5.1. Test – Train Split 
The test-train split is a fundamental methodology applied in this project to validate the performance and 
generalizability of our models. This technique involves partitioning the dataset into two subsets: a training 
set used for fitting the model, and a test set used for evaluating its predictive accuracy. 

By adopting this approach, an unbiased evaluation of the model’s performance was achieved, ensuring its 
capacity to make reliable and accurate predictions on new, unseen data, and confirming that the model 
was not overfitting to the noise or idiosyncrasies of the training data. 

In the implementation of this project, a conventional 80-20 split was employed, allocating 80% of the 
data for training and the remaining 20% for testing. For non-time-series data, a random split approach 
was utilized to create the training and test subsets, ensuring a diverse and representative sampling for 
model validation. In the case for time-series data, a chronological split was maintained to preserve the 
temporal integrity of the data. (Figure 2) 

 

Figure 2 https://www.pi.exchange/knowledgehub/how-are-the-models-evaluated-in-the-customer-churn-prediction-template 

2.5.2. Cross-Validation 
Cross-validation was used to enhance the robustness and generalizability of the models’ performance. It 
entails partitioning the dataset into multiple subsets, iteratively training the model on a combination of 
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these subsets and validating it on the remaining data. This process circulates multiple times, providing a 
comprehensive evaluation of the model across various segments of the data. 

In contrast to a single train-test split, cross-validation mitigates the risk of overfitting and biases associated 
with a specific, random partitioning of the data. This is particularly relevant in complex models where 
there is a risk of overfitting, ensuring that the model retains its predictive accuracy and generalizability 
across diverse data subsets. 

In this project, cross-validation was predominantly applied in the context of decay rate models, where 
advanced modeling techniques such as multiple linear regression, random forest, and gradient boosting 
were employed. Given the complexity of these models, a 20-fold cross-validation was adopted. This 
intensive cross-validation process facilitated the optimal selection of hyperparameters, ensuring the 
models’ robustness and enhancing their predictive integrity and generalizability. 

2.5.3. Model Selection 
Averages 
Utilizing arithmetic averages of historical data points for future forecasting is a fundamental but powerful 
method.. This method is suitable when data is limited or appears randomly distributed without clear 
trends or patterns. By computing the average, we extract a central tendency from historical data, enabling 
straightforward yet crucial forecasts. Despite its simplicity, this method reveals valuable insights, 
providing a stabilizing influence amid the complexity and variability of data. 

However, there are inherent limitations. While the average serves as a robust measure of central 
tendency, it may not entirely capture the nuanced variations in the data, especially those linked to 
equipment characteristics. As a result, the forecasts produced might not be sensitive enough to underlying 
anomalies or subtle changes in asset conditions, potentially missing crucial aspects of the data's behavior. 

Linear Regression  
Linear regression holds a central role in statistical and data analysis, offering a systematic approach to 
understand the impact of various factors and their interactions. 

In this project, both simple (with a single independent variable) and multiple linear regressions (examining 
the influence of multiple independent variables) were used to model relationships between variables, 
assuming normally distributed data residuals. One of the prominent advantages of linear regression lies 
in its transparency and interpretability. The model’s coefficients provide a direct interpretation of each 
factor's unit impact, thereby enhancing the clarity and usability of the model's outputs. 

However, it is essential to underscore that linear regression comes with inherent assumptions, such as 
linearity and the normal distribution of residuals. These assumptions may not align with all datasets, 
necessitating a thorough examination and validation process to ensure the model's appropriateness and 
reliability in capturing underlying data patterns and relationships. 

Machine Learning Algorithm  
Machine Learning algorithms such as Gradient Boosting and Random Forest have been instrumental in 
enhancing the predictive accuracy and robustness of our models. These algorithms leverage historical 
data, learning intricate patterns and relationships, to make powerful predictions and uncover nuanced 
insights in asset behavior. Gradient Boosting and Random Forest are popular and powerful algorithms, for 
they are effective in handling diverse datasets and delivering strong predictive performance.  
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Gradient Boosting 

Gradient Boosting is a powerful ensemble technique that constructs multiple decision trees one after the 
other, with each tree correcting the errors of the one before it. This method is effective in handling diverse 
complexities and nuances in the data, enabling the model to capture intricate relationships and 
dependencies successfully. 

In this project, Gradient Boosting was employed due to its capability to minimize bias and variance, 
delivering models that are both accurate and generalize well to new data. It allows for the consideration 
of various influential factors, enhancing our understanding and predictive prowess regarding asset decay 
rates and defect occurrences. 

Random Forest 

Random Forest is another ensemble learning method that operates by constructing multiple decision 
trees during training and outputs the mode of the classes (classification) or mean prediction (regression) 
of the individual trees for unseen data. It offers a robust approach, particularly beneficial due to its natural 
ability to handle non-linear relationships and interactions between variables, as well as its resilience 
against overfitting. 

In this project Random Forest was to model and predict decay rates based on the historical data and 
features of the assets. 

Both Gradient Boosting and Random Forest were subjected to a rigorous evaluation process, ensuring 
model reliability and robustness. The selection of these algorithms was crucial in navigating the 
complexities of the data, providing a solid foundation for deriving actionable insights and informed 
decision-making based on the forecasted outcomes. 

Simple Exponential Smoothing 
Simple exponential smoothing is a time series forecasting method for univariate data without apparent 
trend or seasonality. In this project, simple exponential smoothing is applied to forecast defect volumes 
by applying it to the historical defect notifications data.  

Simple exponential smoothing prioritises recent data by assigning it more weight through a smoothing 
factor (α). This results in older data having a diminishing influence due to the use of exponentially 
decreasing weights for past observations. The choice of α is crucial and requires a model selection process 
to achieve a reliable forecast. The smoothing factor ranges from 0 to 1, such that when α = 1, the forecast 
closely follows the most recent observation, like a naïve forecast, indicating past observation is not 
indicative of the future. When α =  0, the model produces a forecast that resembles an average of historical 
data. The α provides an understanding of the influence of time for the data (Galit Shmueli and Lichtendahl, 
2018).  

However, there are inherent limitations such that its predictive power yields a point forecast which is 
most suitable for one-step ahead forecast and not necessarily for long forecasting horizon. It also assumed 
that the underlying patterns in the data will persist. Nevertheless, its ability to adapt based on recent data 
can enhance accuracy compared to a simple average. 



11 
 

Logistic Regression 
Logistic Regression is a powerful statistical technique that can be applied to the models where the 
outcome variable is binary – in this project, specifically, determining whether a defect is present or not. 
This method is particularly adept at handling categorical outcome variables, making it an ideal choice for 
this type of analysis. 

Logistic Regression is a valuable tool for modeling the probability of a defect occurring, providing in-depth 
insights into the connections between predictors and the likelihood of a defect. It enables the exploration 
of complex relationships between explanatory variables and binary outcomes, offering a nuanced 
understanding of the factors influencing the presence of defects. 

The coefficients in the Logistic Regression model are interpreted as the log odds, providing a robust 
framework for understanding the multiplicative change in the odds of the outcome due to a one-unit 
change in the predictor. This approach enhances the model's interpretability, allowing for a more 
straightforward translation of results into actionable insights. 

Weibull Survival Distribution 
Weibull Survival Analysis stands as a robust statistical methodology, particularly illuminating when 
exploring the relationships between defect rates and the age of assets in our study. This technique, 
characterized by its flexibility and adaptability, allows for a nuanced modeling of the time until an event 
occurs, in this case, the manifestation of defects. 

Weibull Survival Analysis can be instrumental in dissecting the intricate interplay between the age of 
assets and the occurrence of defects. Its application can give a deeper understanding of how the likelihood 
of defects evolves over time, enabling a more precise characterization of equipment durability and 
longevity. 

The Weibull model, with its shape and scale parameters, offers insightful interpretations regarding failure 
rates, allowing for a nuanced exploration of defect patterns across different asset age groups. However, 
careful attention is required to ensure that the model's assumptions and the data's characteristics are 
harmoniously aligned, ensuring the reliability and validity of the analytical insights derived. 

In this project, emphasis was placed on validating the Weibull model’s accuracy, previously developed by 
the Line Asset team in Excel. The focus was concentrated on confirming the model's fidelity, comparing it 
against alternative models, and rigorously testing the necessary assumptions to ensure analytical 
robustness. 

2.6. Model Evaluation 
Model evaluation is a crucial step in the analytical process, ensuring that the developed models are robust, 
reliable, and generalizable to new, unseen data. Various metrics and techniques were utilized to validate 
the models, providing a comprehensive evaluation of their performance and reliability. 

2.6.1. Error Measurement: Root Mean Squared Error (RMSE) 
The Root Mean Squared Error (RMSE) serves as a crucial metric in evaluating the predictive accuracy of 
our models. RMSE quantifies the average difference between the model’s predicted values and the actual 
outcomes, providing a reliable indicator of the model’s predictive performance. A lower RMSE signifies a 
higher accuracy in the model’s predictions, reflecting a closer alignment between predicted values and 
actual results. 
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An essential characteristic of RMSE is that it is expressed in the same units as the original data, facilitating 
a straightforward interpretation of the error magnitude. However, it’s crucial to note that RMSE values 
are inherently dataset-specific and are most informative when used to compare models applied to the 
same dataset. 

In this project, RMSE played a crucial role in selecting the most suitable models by identifying superior 
performance and accuracy, guiding the choice for subsequent forecasting tasks. 

2.6.2. R-squared Value 
The R-squared value was instrumental in assessing the explanatory power of linear regression model. It 
quantifies the proportion of variance in the dependent variable that is predictable by the independent 
variables, serving as a robust indicator of model fit and predictive capability. 

An R-squared value encapsulates the percentage of variation in the data that the model successfully 
explains. Higher R-squared values signify models with enhanced explanatory power, indicating a more 
substantial proportion of variability being accounted for by the model. 

Various thresholds can be used to evaluate the adequacy of the R-squared value, each applicable based 
on different considerations and contexts. In this project, a threshold of 0.5 was adopted. This criterion 
was based on the rationale that a model explaining over 50% of the data variation offers valuable 
predictive insights, substantiating its utility beyond mere random guessing, and thereby warranting its 
application in forecasting. 

2.7. Model Insight: Feature Importance 
Feature importance was a crucial aspect of our model evaluation process, predominantly applied to the 
machine learning models utilized in this project. Unlike linear regression models where coefficients offer 
direct interpretations of the variables' impacts, machine learning models often lack such straightforward 
interpretability. Consequently, feature importance becomes instrumental in understanding and 
interpreting the influence of various variables on the model's predictions. 

In machine learning, feature importance varies by model due to their distinct methodologies. In Random 
Forest, importance is often expressed as decimals, representing the normalized reduction in criterion (like 
Gini impurity) brought by a feature. This is calculated based on the feature's contribution to the 
homogeneity of nodes in the decision trees. In contrast, Gradient Boosting models typically report feature 
importance as whole numbers, indicating the count of times a feature is used in split points of trees. While 
the numbers are presented in different scales, the higher the importance value, the more important the 
variable is. 

In our approach, feature importance was meticulously utilized to discern which variables wielded the most 
significant influence on the model’s outcomes. This not only facilitated a deeper understanding of the 
model’s decision-making process but also assisted in validating the relevance and significance of the 
variables included in our models. 

By evaluating feature importance, we gained invaluable insights into the relative contributions of each 
feature, ensuring that the models were operating with optimally relevant and impactful variables. This 
approach enhanced the robustness and reliability of our models, providing a solid foundation for the 
interpretation and application of their predictions and insights. 
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3. Modelling Process and Empirical Results 
3.1. Line Assets: Wood Poles 
For wood poles, the outcome variables are the decay rate of Sound Wood Thickness (SWT) and the diameter—
crucial metrics used during inspections to assess the wood pole's condition. The line asset team employs a 
condition-based model that effectively translates SWT and diameter measurements into discernible wood pole 
conditions, facilitating the estimation of replacement volumes.  

The historical measurements of the SWT and diameter are readily available from cyclic inspections. These 
measurements, coupled with the wood pole features serve as the basis for modeling process. The primary 
focus is on modeling the decay behavior of SWT and diameter, with an emphasis on capturing decay rates, 
enhancing prediction accuracy, and enabling flexibility for future improvements in the condition-based model. 

The historical measurements were analyzed, calculating the time-differentiated changes in SWT and diameter 
to ascertain decay rates. Definitions applied include: 

• For SWT, decay rate is defined as millimeters per year. 
• For diameter, decay rate is defined as a percentage change per year. 

3.1.1. Modelling Process: Decay Rates 
In modeling decay rates, we considered factors such as wood pole species, type, classification, and age 
group. With a comprehensive historical dataset available, we tested Linear Regression, Random Forest, 
and Gradient Boosting (refer to 2.5.3 for model specifications). To ensure robust model evaluation, train-
test split, and 20-fold cross-validation were applied, facilitating a comprehensive comparison of model 
accuracies and the derivation of confidence intervals. The comprehensive assessment of the model 
performance was then evaluated using Root Mean Squared Error (RMSE) obtained from the 20 cross-
validations and one standard deviation to indicate variability. 

Historical measurements of Sound Wood Thickness (SWT) are available for assets from CP, PAL, and UE; 
however, diameter measurements are only accessible for CP and PAL. Given this, all diameter forecasts 
will be primarily based on predictive models derived from CP and PAL data. As UE doesn’t have initial 
diameter measurements for wood poles, the average decay rate from the CP/PAL model will be applied 
for forecasting. 

Utilizing the best-performing models, as identified through cross-validation, we proceeded to forecast the 
decay rates for individual equipment. This approach accounted for the progressive aging of equipment over 
time, ensuring a nuanced consideration of temporal influences on decay rates. Subsequently, the forecasted 
decay rates were applied to the measurements, facilitating the determination of future values for diameters 
and Sound Wood Thickness (SWT). 

These refined estimates were then integrated into the condition-based model, enabling a precise calculation 
of anticipated defect volumes, thereby enriching the model with forecasted data and enhancing its predictive 
accuracy and utility. 

3.1.2. Empirical Results: Decay Rates 
Below is a summary of the model accuracies. In selecting the most effective model for each measurement, 
considerations were made regarding both the average RMSE and the confidence range. A comparative 
analysis was conducted across the outputs of all three models for each measurement. The model with the 
smallest average RMSE coupled with the narrowest confidence range is selected as the most accurate and 
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robust model. As shown in Table 2, Random Forest model demonstrated superior performance for 
measurements 1) and 2), while Gradient Boosting proved to be the best model for measurement 3). 

Measurement Model Cross-validation RMSE 
1) Diameter (CP, PAL) Linear Regression 0.2212 ± 0.2441 

Random Forest 0.2193 ± 0.2434 
Gradient Boosting 0.2220 ± 0.2361 

2) Sound Wood Thickness (UE) Linear Regression 4.5180 ± 0.4230 
Random Forest 4.4684 ± 0.4131 
Gradient Boosting 4.4881 ± 0.4210 

3) Sound Wood Thickness (CP, PAL) Linear Regression 6.1118 ± 1.7079 
Random Forest 6.1113 ± 1.7127 
Gradient Boosting 6.1036 ± 1.7097 

Table 2: Decay Rates Model Performance 

To gain deeper insights into the model and enhance interpretability, a focused analysis was conducted to 
determine the significance of each variable in influencing the measurement decay rates. Utilizing the best-
performing models, feature importance was computed for each measurement, identifying the variables 
that had the most influence in determining decay rates. The following Tables show the top ten most 
influential features for each model, offering a detailed perspective on the variables that predominantly 
drive the measurement decay rates in the studied models: 

Feature Importance 
Serial Number_WOOD CREOS IMPREGNATED 0.501851 
decay duration 0.451777 
Serial Number_WOOD SALT IMP (GREEN) 0.015662 
Maintenance planner group [MPG]_GEE 0.013506 
Maintenance planner group [MPG]_CP 0.006839 
Model number [EQP NavAtt]_BB-BLACKBUTT 0.005931 
Maintenance planner group [MPG]_BEN 0.001369 
Maintenance planner group [MPG]_SUN 0.001240 
Equipment Type [EQP NavAtt]_P_WOOD_CL1 0.000759 
Model number [EQP NavAtt]_GG-MOUNTAIN GREY GUM 0.000511 

Table 3: Diameter (CP, PAL) - Random Forest 

Sound Wood Thickness (UE) – Random Forest 

Feature Importance 
age 0.548261 
Pole Type_Wood Creos Impregnated 0.136072 
Class Of Pole_Class 1 0.112379 
Pole Species_White Stringybark 0.040904 
Pole Type_Wood Untreated Dressed 0.019489 
Pole Species_Mountain Greygum 0.017164 
Class Of Pole_Class 3 0.016223 
Pole Species_Grey Gum 0.009830 
Pole Type_Wood Untreated Round 0.009675 
Pole Species_Grey Ironbark 0.009517 
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Sound Wood Thickness (CP, PAL) – Gradient Boosting 

Feature Importance 
age 137 
Planner Group_CP 33 
Model No./Species_ZZ-WOOD UNKNOWN 19 
ManufSerialNo._WOOD SALT IMP (GREEN) 18 
ManufSerialNo._WOOD UNTREATED ROUND 16 
Model No./Species_IB-IRONBARK 15 
Planner Group_SUN 12 
Object Type/Equipment Type_P_WOOD_CL3 11 
ManufSerialNo._WOOD CREOS IMPREGNATED 8 
Model No./Species_GI-GREY IRONBARK 7 

 

The analysis reveals distinctive contributions of various features across different measurements. Notably, the 
features incorporated in the model largely demonstrate relevance, with ‘age (duration)’ emerging as a 
particularly influential factor across all decay rates. 

3.2. Line Assets: Crossarms, Insulators, Services 
The analysis for crossarms, insulators, and services primarily relies on defect notification data, with two 
outcome variables being modeled. The first approach involves forecasting the defect find rate, 
determining the number of identified defects per inspection each year. The second approach examines 
defects as binary variables, focusing on predicting the probability of defect occurrence for each piece of 
equipment. 

3.2.1. Modelling Process: Defect Find Rate 
In analyzing the defect find rate for CP and PAL assets, emphasis was placed on two variables believed to 
significantly influence defect occurrence: the year of inspection and the equipment’s location. The 
significance of these variables in influencing defect occurrence within each asset group was assessed using 
Analysis of Variance (ANOVA), facilitating informed decision-making in the model-building process. 

To predict the defect find rate from 2026 to 2031, it's crucial to assess the significance of time (year 
variable). The outcome of the ANOVA helps determine if the year contributed to the variation in the data. 
If the year shows a significant influence with p-value of 0.1 (refer to 2.6.2), it is then incorporated into the 
analysis. Given the limited number of data points (ranging from 3 to 5) and the presence of only one 
explanatory variable (year), linear regression was chosen to model and understand the trend. For asset 
classes where the year was not significant, an average historical defect find rate at the location level was 
used as the selected model to forecast the defect find rate.  

The efficacy of this model is evaluated based on the R-squared value it yields. A model is deemed 
satisfactory if the R-squared value exceeds 0.5 (refer to 2.6.2), indicating that over half of the variation is 
explicable by the model. In scenarios where the model doesn’t meet this threshold, a different approach 
is adopted. Instead of relying on the regression model, we revert to using historical averages, proceeding 
to make predictions based on these averages. The final model performance was then evaluated using 
Root Mean Squared Error (RMSE).  
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3.2.2. Empirical Results: Defect Find Rate 
CP & PAL Network 
The table below shows the outputs from the ANOVA analysis applied to each asset group’s historical data. 
The F-statistics were utilized to test the hypotheses, with significance assessed based on p-values. A 
variable was considered statistically insignificant at a 10% level if the p-value exceeded the chosen 
threshold, indicating a lack of substantial evidence to confirm its influence on the defect find rate. 

  F-statistics P-Value(>F) Variance proportion (%) 

HV Crossarm 
Year 1.2151 3.2569e-01 2.70% 

Location 13.4295 3.5959e-07 79.53% 
Residual   17.77% 

LV Crossarm 
Year 3.3718 3.4976e-02 7.67% 

Location 12.2112 8.6315e-07 74.12% 
Residual   18.21% 

HV Insulator 
 

Year 19.6356 3.7919e-07 73.28% 
Location 0.7043 6.8484e-01 5.26% 
Residual   21.46% 

LV Insulator 
 

Year 2.5756 0.0774 8.80% 
Location 7.0069 0.0001 63.86% 
Residual   27.34% 

Service 
 

Year 5.2731 2.2311e-03 12.42% 
Location 14.5869 1.0408e-08 68.73% 
Residual   18.85% 

 

The model outputs indicate that year and location together explain over 70% of the data's variation. 
Location emerges as a significant determinant for all assets, except for HV insulators. Segmenting the 
forecasts based on location not only enhances explanatory power but also refines the granularity of defect 
volume predictions. Consequently, the decision was made to proceed with analyses focused on datasets 
grouped by location. 

The defect find rate plots below illustrate the clarification of location and year effects, highlighting the 
advantages of their separate modeling. This approach allows for the capture of diverse influences on 
defect find rates. For instance, location 'SHE' shows a notably distinct trend compared to other locations 
across various assets. Similarly, 'CP' exhibits a considerably lower defect find rate in numerous assets, 
attributed to geographic advantages. These nuanced differences and trends are more accurately captured 
and explained when year and location variables are meticulously incorporated into our analyses. 
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Figure 3: LV Cross Arm Defect Find Rate by Location across 2019 - 2022 
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The summary below outlines the specific models utilized for each asset type across various locations, 
reflecting the process detailed in 3.2.1 for determining the most suitable model for predictive analyses. 

Final model decision 

 BAL BEN CP GEE HOR MIL SHE SUN WAR 
HV Crossarm AVG AVG AVG AVG AVG AVG AVG AVG AVG 
LV Crossarm AVG AVG AVG AVG AVG AVG AVG AVG AVG 
HV Insulator AVG Linear Linear AVG AVG AVG Linear Linear Linear 
LV Insulator AVG AVG AVG AVG AVG AVG AVG AVG AVG 

Service AVG AVG AVG Linear AVG AVG AVG AVG Linear 
 

Error measurement (RMSE) 

 BAL BEN CP GEE HOR MIL SHE SUN WAR 
HV Crossarm 0.0188 0.0116 0.0274 0.0409 0.0198 0.0473 0.0449 0.0080 0.0231 
LV Crossarm 0.0016 0.0040 0.0087 0.0074 0.0113 0.0026 0.0240 0.0033 0.0069 
HV Insulator 0.0023 0.0013 0.0000 0.0073 0.0046 0.0041 0.0010 0.0010 0.0052 
LV Insulator 0.0027 0.0011 0.0024 0.0059 0.0014 0.0013 0.0030 0.0009 0.0036 

Service 0.0088 0.0040 0.0042 0.0044 0.0116 0.0093 0.0057 0.0063 0.0010 
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UE Network 
For UE’s line assets, location information is not readily available, and there is no trending in defect find rate 
(see table below, all p-values are in-significant), thus averages of historical data are taken as forecasting rates. 

 HV Crossarm LV Crossarm HV Insulator LV Insulator Service 
p-value of year 0.5 0.9 0.1 0.6 0.7 

 

In forecasting future defect volumes, a foundational assumption was made that inspections would occur on a 
consistent five-year cycle. This assumption implies that the inspection volumes will manifest a repetitive 
pattern every five years. Guided by this rule, projections for inspection volumes were formulated for the years 
2023 through 2031. This was accomplished by replicating the inspection volumes recorded in the preceding 
five years. 

Subsequent to establishing the projected inspection volumes, the forecasted defect find rates were 
meticulously applied to each asset at each respective location. This process facilitated the generation of 
comprehensive forecasts pertaining to defect volumes, ensuring that the projections were substantiated by a 
systematic application of historical patterns and forecasted rates. 

3.2.3. Modelling Process: Defect (Binary Variable) 
For line assets (crossarms, insulators, and services), equipment feature data is available. This data can be 
integrated with defect notification data using the equipment number as a common key, enabling a detailed 
analysis based on combined datasets. Consequently, this allows for the exploration of a binary outcome—
‘defect or not’—as the target variable, facilitating the development of models aimed at predicting the 
probability of a defect occurrence based on asset characteristics. 

In this analytical endeavor, both logistic regression and Weibull distribution models were employed. Logistic 
regression was leveraged to ascertain the impact of each characteristic on the likelihood of a defect, providing 
insights into the utility of each feature in predicting the outcome. On the other hand, the Weibull distribution 
was utilized to model the survival behavior of the equipment, focusing on the temporal aspect of the defect 
occurrences. 

While both models are intuitively appealing and theoretically pertinent for modeling the binary outcome, their 
practical performance was somewhat limited. A significant challenge encountered was the disproportionate 
representation of the defect occurrences within the dataset—defective equipment constituted a minor 
fraction compared to non-defective ones. This imbalance hindered the model's ability to glean meaningful 
insights and accurately characterize the defect behavior, ultimately affecting the robustness and reliability of 
the predictive models. 

3.3. Plant Assets: Transformers, Switchgears 
 The analysis for transformers primarily relies on defect notification data using defect rate as the outcome 
variable. The first approach involves forecasting the asset defect rate and asset population (when 
appropriate) to determine the number of defects per asset population each year.  

The analysis of switchgear follows a similar modelling process to the transformers, focused on forecasting 
the asset defect rate and asset population (when appropriate) to determine the number of defects per 
asset population each year 
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3.3.1. Modelling Process: Asset Defect Rate  
Transformer and Switchgear follow the same modeling process, differing only in how the dataset was 
separated for distinct analyses, as outlined in a later section. 

To predict the asset defect rate for 2026 to 2031, it's crucial to assess the significance of time (year 
variable). Given the limited number of data points (range from 3 to 6) and the presence of only one 
explanatory variable (year), linear regression was chosen to model and understand the trend.  

The efficacy of this model is evaluated based on the R-squared value it yields. A model is deemed 
satisfactory if the R-squared value exceeds 0.5 (refer to 2.6.2), indicating that over half of the variation is 
explicable by the model. In scenarios where the model doesn’t meet this threshold, a different approach 
is adopted. Instead of relying on the regression model, we revert to using historical averages, proceeding 
to make predictions based on these averages. The final model performance was then evaluated using 
Root Mean Squared Error (RMSE).  

Transformer 
In analyzing the asset defect rate for transformers, the defect notifications dataset and the asset 
population dataset were used in combination to derive the asset defect rate per annum. The defect rate 
per subclass for each network is shown in below where it is apparent that the defect rate for each subclass 
behaves similarly where the ground type has the highest defect rate and pole top has the lowest defect 
rate comparatively to other subclasses for both networks regardless to the population count. The defect 
rate for each subclass is thus analysed independently, except for UE network where all defects were 
totaled.  
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For subasset class that had no recorded defect notifications such as Ground Transformers in the CP 
network for 2018 and 2019. The defect rates for these subclasses were combined with other subclasses 
that also had no notifications (Ground + Pole Top) to obtain a combined defect rate.  

Since oil leakage can have a significant implication for transformers, the defect notifications were further 
divided into two categories: defects caused by oil leaks and the overall total defect count. The charts 
below suggest the defect rate caused by oil leaks had a smaller variation when compared accounting for 
the total defect counts, except for 2020, when the defect rate was much higher for both networks. Thus, 
defects due to oil leaks is analysed independently.  

 

  

0

0.04

0.08

0.12

0.16

Ground Indoor Kiosk Pole Top

As
se

t D
ef

ec
t R

at
e

Transformer Sub Class

Transformer Defect: CP Network

2017

2019

2021

2018

2020

2022

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

2017 2018 2019 2020 2021 2022

As
se

t D
ef

ec
t R

at
e

Year

PAL Tranformer Defect: Total vs Leak

Only Leak
Total

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

2017 2018 2019 2020 2021 2022

As
se

t D
ef

ec
t R

at
e

Year

CP Tranformer Defect: Total vs Leak

Only Leak

Total



22 
 

Switchgear 
Similar to transformers, each subclass was analyzed independently. Due to business context only the historical 
defect rate from 2020 to 2022 was used to forecast the defect rate. Subasset classes with no recorded defect 
notification for at least one year were combined with other subclasses to obtain a combined defect rate. 

 

 

3.3.2. Empirical Results: Asset Defect Rate 
Transformer 
The table below outlines the specific models utilized for each subclass for defect due to leakage and total 
defect, reflecting the modelling process to determine the most suitable model for predictive analyses. All 
subclasses of transformers in both networks indicate that a linear relationship is not present in the defect 
rate across 2017 to 2022. The yellow highlighted cells are subasset class with combined defect rate.  
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Pole Top AVG AVG AVG AVG 
Ground AVG AVG AVG AVG 

The following tables show the asset defect rate estimated.  

Sub Class PAL - Total CP - Total PAL - Leak CP - Leak UE - Total 
Indoor 0.0273 0.0095 0.0137 0.0044 

0.0172 Kiosk 0.0147 0.0113 0.0076 0.0026 
Pole Top 0.0024 0.0023 0.0007 0.0026 
Ground 0.0833 0.0023 0.0345 0.0026 

Table 4: Transformer Defect Rate Estimated using Average Historical 

The errors for these estimates derived in RMSE are as follows: 

Sub Class PAL - Total CP - Total PAL - Leak CP - Leak UE - Total 
Indoor 0.01026 0.00742 0.00569 0.00343 

0.00344 Kiosk 0.00555 0.00681 0.00483 0.0033 
Pole Top 0.00050 0.0018 0.00016 0.0033 
Ground 0.04186 0.0018 0.02047 0.0033 

Table 5: Transformer Defect Rate Error Measurement (RMSE) 

Switchgear 
For switchgear, the asset defect rate for all subclasses does not appear to have a time trend in the 
historical data. Therefore, the average of the historical data was computed and will be used as the defect 
rate. The following table shows the estimated asset defect rate.  

Sub Class PAL CP UE 
ACR 0.00466 0.004583 

0.01623 

Air Break- Indoor 0 0.041999 
Air Break- Pole 0.01367 0.004583 
Gas Switch- Pole 0.00375 0.004583 
HV Isolator 0 0.004583 
LV CB 0 0.000485 
RMU  0.00290 0.01445 

Table 6: Switchgear Defect Rate Estimated using Average Historical 

The error measurements derived in RMSE for the predictions is as follows: 

Sub Class PAL  CP  UE  
ACR 0.00269 0.002353 

0.003255 
 

AIR BREAK - INDOOR 0 0.034585 
Air Break- Pole 0.00762 0.002353 
GAS SWITCH - POLE 0.00181 0.002353 
HV Isolator 0 0.002353 
LV CB 0 0.000144 
RMU / METAL CLAD SWITCH 0.00164 0.00118 

Table 7: Switchgear Defect Rate Error Measurement (RMSE) 
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3.3.3. Modelling Process: Asset Population 
Asset population data was obtained from in-service equipment in the RIN data. Specific data processing 
can be referred to in Data Cleaning section 2.3.2.  

To predict the eventual defect volume for transformers and switchgears, future asset populations were 
forecasted using linear regression, chosen for its compatibility with the observed historical linear patterns. 
This relationship was then applied to project future asset populations, assuming ongoing consistent 
growth. 

For transformers, this modelling process applies for all CP, PAL, and UE networks. For switchgears, some 
exceptions apply. The modeling process is only applicable to CP and PAL, as the UE network switchgear 
population is assumed to be constant. Another exception is for Air Break – Pole switchgears in the CP and 
PAL networks. These assets are being phased out by 2032 and gradually replaced with Gas Switch – Pole 
equipment. A constant decay factor is applied over time, and this decay is added to the gas switch – pole 
population in the forecasted data. 

3.3.4. Empirical Results: Asset Population 
Transformer 
The tables below display forecasted populations for each network, with consistent growth evident in most 
asset subclasses, boasting an R-squared value exceeding 0.9. The exceptions include indoor transformers in 
PAL and ground transformers in CP, which remain constant. 

Sub Class 2026 
Prediction 

2027 
Prediction 

2028 
Prediction 

2029 
Prediction 

2030 
Prediction 

2031 
Prediction 

R-squared 

Ground 361 347 333 319 304 290 0.973729 
Indoor 524 524 524 524 524 524 0.000366 
Kiosk 6300 6534 6769 7004 7238 7473 0.991374 
Pole Top 83464 83989 84514 85039 85564 86090 0.937229 

Table 8: PAL Transformer Asset Population Forecast 

Sub Class 2026 
Prediction 

2027 
Prediction 

2028 
Prediction 

2029 
Prediction 

2030 
Prediction 

2031 
Prediction R-squared 

Ground 25 25 25 25 25 25 - 
Indoor 3808 3836 3865 3893 3922 3950 0.971689 
Kiosk 478 484 491 497 503 509 0.967218 

Pole Top 852 857 861 865 870 874 0.896511 
Table 9: CP Transformer Asset Population Forecast 

Sub Class 2026 
Prediction 

2027 
Prediction 

2028 
Prediction 

2029 
Prediction 

2030 
Prediction 

2031 
Prediction 

R-squared 

UE Total 14558 14646 14734 14822 14910 14998 0.963826 
Table 10: UE Transformer Asset Population Forecast 

Switchgear 

Sub Class 2026 
Prediction 

2027 
Prediction 

2028 
Prediction 

2029 
Prediction 

2030 
Prediction 

2031 
Prediction R-squared 

ACR 3720 4021 4322 4623 4924 5225 0.9437 
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Air Break- 
Indoor 41 41 41 41 41 41 - 

Air Break- 
Pole 1450 1209 967 725 483 241 Linear Decay 

Gas Switch - 
Pole 3514 3796 4077 4359 4640 4922 0.9884 

HV Isolator 106 109 111 114 117 119 0.8773 
LV CB 4505 4581 4657 4733 4809 4885 0.9918 
RMU / METAL 
CLAD SWITCH 5700 5986 6272 6558 6843 7129 0.9888 

Table 11: PAL Switchgear Asset Population Forecast 

Sub Class 2026 
Prediction 

2027 
Prediction 

2028 
Prediction 

2029 
Prediction 

2030 
Prediction 

2031 
Prediction R-squared 

ACR 48 49 50 51 52 54 0.713208 
AIR Break - 
Indoor 59 59 60 61 61 62 0.84 

Air Break- Pole 9 7 6 4 3 1 Linear 
Decay 

Gas Switch - 
Pole 377 404 431 459 486 513 0.980084 

HV Isolator 80 82 85 88 90 93 0.889967 
LV CB 3837 3913 3989 4065 4141 4216 0.988011 
RMU / METAL 
CLAD SWITCH 2553 2639 2726 2812 2899 2986 0.984913 

Table 12: CP Switchgear Asset Population Forecast 

3.4. Plant Assets: Underground Asset 
For the underground assets, where asset population and equipment features were unavailable, the only 
dataset accessible was the defect notifications. Given that most associated assets in this class are underground, 
defect notifications are triggered upon issues. Consequently, we employed time series analysis and forecasting 
to estimate defect volumes. Each associated asset class in each network was analyzed separately.  

3.4.1. Modelling Process: Defect Volume 
The notification data was aggregated to monthly data spanning from January 2017 to December 2022, with a 
total of 72 months. In instances where no notifications were recorded, the notification count was considered 
as 0. The monthly aggregated data did not show clear trend and seasonality, thus to select the most reliable 
forecasting methodology, three models were tested: simple exponential smoothing (SES), linear regression, 
and historical average. (refer to 2.5.3 for model specifications)  

To ensure a robust model evaluation, we performed a time-series variant of test-train split (refer to 2.5.1)  and 
compared the results from the three models. The training data covered the period from January 2017 to 
September 2021. The trained model was subsequently applied to forecast data from October 2021 to 
December 2021. To evaluate the appropriateness of forecasting for 2026 to 2031, the Root Mean Square Error 
(RMSE) was computed using the predicted values and actual values from the testing set. 

The priority was to identify the model with the smallest Root Mean Square Error (RMSE). As well as ensuring 
the yielded results that were reasonably close to those of the other models. Additionally, when SES algorithm, 
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the hyperparameter, smoothing factor (α), was selected by iteratively testing alpha from 0.2 to 1.0 to identify 
the lowest RMSE most suitable and balanced value for α to apply. Finally, to forecast defect volumes for 2026 
to 2031, each model was applied to the complete historical dataset, with the SES model being updated using 
the selected α. The forecast output of time this analysis is in monthly data, which is subsequently aggregated 
into annual figures. 

3.4.2. Empirical Results: Defect Volume 
The table below shows the forecasted annual replacement volume for each of the associated classes in 
the underground asset group along with the RMSE values in parentheses. Additionally, the table includes 
the most suitable smoothing factor alpha for Simple Exponential Smoothing (SES), and the lowest RMSE 
values are highlighted in yellow. 

Both the Simple Exponential Smoothing (SES) and average yield a point forecast which results in constant 
forecasts for each year. Linear regression also provides a stable forecast for the entire prediction period 
because of the stable defect notification volumes when distributed into months, leading to a relatively 
flat slope in the linear regression model. The yellow highlighted values are those with the lowest RMSE.  

UG Associated 
Asset Models PAL CP UE 

Pits 

SES 122 (35.92)  
α = 0.20 

17 (6.77) 
α = 0.20 

12 (2.14) 
α = 0.20 

LR 66 (21.21) 12 (5.47) Negative (3.87) 
AVG 65 (27.53) 11 (5.80) 10 (2.50) 

Pillars 

SES 117 (24.03) 
α = 0.20 

- 12 (1.21) 
α = 0.45 

LR 44 (15.85) - 1 (1.19) 
AVG 44 (20.27) - 1 (1.18) 

Subtransmission 
Cable 

SES 1 (1.54) 
α = 0.20 

5 (3.00) 
α = 0.20 - 

LR 0 (1.48) 1 (2.87) - 
AVG 0 (1.44) 1 (2.89) - 

HV Cable 
SES 14 (3.63) 

α = 0.20 
49 (11.57) 
α = 0.20 

12 (2.96) 
α = 0.45 

LR 8 (2.38) 11 (9.32) 13 (3.42) 
AVG 8 (2.66) 11 (10.85) 13 (3.92) 

LV Cable 
SES 7 (2.05)  

α = 0.20 
4 (2.04) 
α = 0.20 

41 (5.35) 
α = 0.20 

LR 3 (1.68) 10 (6.63) 23 (5.60) 
AVG 3 (1.79) 10 (2.93) 23 (8.87) 

This shows the best model with the lowest RMSE. Linear regression yields a slightly smaller error than 
that of an average value in most cases suggesting there accounting for the time-dependent variability, 
the model performs only slightly better than average. For instances where simple exponential 
smoothing is chosen as the best performing algorithm, the alpha value is low of 0.20 – 0.45 indicates 
less emphasis on recent observations.  

UG Associated Asset PAL CP UE 
Pits LR LR SES (0.45) 
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Pillars LR - AVG 
Subtrans Cable AVG LR - 

HV Cable LR LR SES (0.45) 
LV Cable LR SES (0.20) SES (0.20) 

 

4. Key Findings and Analysis 
4.1. Line Assets: Decay Rate Summary 
The following are the visualizations for comparing the wood pole measurement decay rates:  

 

 

 

4.2. Line Assets: Find Rate Comparisons 
Visualizations of the defect find rate across different locations and owner groups for each asset category have 
revealed notable disparities and trends. A significant observation is the pronounced variation in defect find 
rates between different asset owners and locations, both in magnitude and directional trend. 

For instance, considering the LV crossarm, the Shepparton (‘SHE’) location tagged ‘SHE’ exhibits a discernible 
downward trend in defect rates, contrasting with other locations that either remain trendless or display an 
upward trajectory. Additionally, the Warnambool (‘WAR’) consistently registers the highest defect find rates 
across most assets. 
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These observations underscore the necessity of conducting nuanced analyses and forecasts at a granular, 
location-specific level. Relying on a consolidated average across all locations can introduce biases, 
especially considering the diverse historical patterns and asset sizes seen in different locations. Tailoring 
the analysis to reflect location-specific trends and magnitudes ensures a more accurate and representative 
understanding of the defect find rates, thereby enhancing the precision and relevance of the resulting 
forecasts. Refer to Appendix 1 for location codes and their corresponding regions.  
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4.3. Plant Assets: Asset Defect Rate 
4.3.1. Transformer Replacement Volume 
Combining the prediction values of defect rate and asset population, the replacement volume is derived. 
The lower bound number indicates the defect volume due to oil leaks and the upper bound includes the 
entire defect notifications. The following shows the replacement volume within this range for PAL and CP 
network. 

Sub Class 2026 
Prediction 

2027 
Prediction 

2028 
Prediction 

2029 
Prediction 

2030 
Prediction 

2031 
Prediction 

Ground (12, 31) (12, 30) (12, 29) (11, 28) (11, 26) (10, 25) 
Indoor (7, 14) (7, 14) (7, 14) (7, 14) (7, 14) (7, 14) 
Kiosk (48, 93) (49, 96) (51, 99) (53, 103) (55, 106) (56, 110) 
Pole Top (61, 198) (61, 199) (62, 200) (62, 202) (62, 203) (63, 204) 

Table 13: PAL Transformer Replacement Volume 

Sub Class 
2026 

Prediction 
2027 

Prediction 
2028 

Prediction 
2029 

Prediction 
2030 

Prediction 
2031 

Prediction 
Ground (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) 
Indoor (17, 36) (17, 36) (17, 37) (17, 37) (17, 37) (17, 37) 
Kiosk (1, 5) (1, 5) (1, 6) (1, 6) (1, 6) (1, 6) 
Pole Top (2, 2) (2, 2) (2, 2) (2, 2) (2, 2) (2, 2) 

Table 14: CP Transformer Replacement Volume 

Sub Class 2026 
Prediction 

2027 
Prediction 

2028 
Prediction 

2029 
Prediction 

2030 
Prediction 

2031 
Prediction 

UE Volume 241 241 241 241 241 241 
Table 15: UE Transformer Replacement Volume 

0.00%

2.00%

4.00%

6.00%

8.00%

10.00%

12.00%

14.00%

BAL BEN GEE HOR MIL SHE SUN WAR CP UE

De
fe

ct
 fi

nd
 ra

te
 (d

ef
ec

t/
in

sp
ec

tio
n)

HV Insulator Defect Find Rate Comparison

2020

2021

2022

2023 Prediction

2024 Prediction

2025 Prediction

2026 Prediction

2027 Prediction

2028 Prediction

2029 Prediction



31 
 

4.3.2. Switchgear Replacement Volume 
Combining the prediction values of defect rate and asset population, the replacement volume is derived. 
The asset class where defect rate is 0 will be left out in the result output.  

Sub Class 2026 
Prediction 

2027 
Prediction 

2028 
Prediction 

2029 
Prediction 

2030 
Prediction 

2031 
Prediction 

ACR 13 15 16 17 19 20 
Air Break- Pole 30 26 23 20 17 13 
Gas Switch- Pole 10 11 12 13 14 15 
RMU 14 15 16 17 17 18 

Table 16:PAL Switchgear Replacement Volume 

Sub Class 2026 
Prediction 

2027 
Prediction 

2028 
Prediction 

2029 
Prediction 

2030 
Prediction 

2031 
Prediction 

AIR BREAK - 
INDOOR 2 2 2 2 2 3 

GAS SWITCH - 
POLE 1 1 2 2 2 2 

LV CB 2 2 2 2 2 2 
RMU / METAL 
CLAD SWITCH 33 34 36 37 38 39 

Table 17:CP Switchgear Replacement Volume 

Sub Class 2026 
Prediction 

2027 
Prediction 

2028 
Prediction 

2029 
Prediction 

2030 
Prediction 

2031 
Prediction 

UE Volume 241 241 241 241 241 241 
Table 18:UE Switchgear Replacement Volume 

4.4. Plant Assets: Defect Volume 
The table below shows the forecasted annual replacement volume for each of the associated classes in the 
underground asset group.  

UG Associated Asset PAL CP UE 
Pits 66 (21.21) 12 (5.46) 12 (2.14) 

Pillars 44 (15.85) - 1 (1.18) 
Subtrans Cable 0 1 (2.87) - 

HV Cable 8 (2.38) 11 (9.33) 12 (2.96) 
LV Cable 3 (1.67) 4 (2.04) 41 (5.35) 

Table 19: UG Assets Forecasted Replacement volume with Error Measurement 

5. Recommendations 
Accurately forecasting the replacement volume for the asset is imperative for the network to ensure the 
seamless delivery of energy to consumers while maintaining safety. Overestimating this volume results in 
resource wastage and underutilization of the asset's operational lifespan. Conversely, underestimating the 
volume leads to insufficient resources for adequate asset maintenance, potentially falling short of expectations 
and requirements. 
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Plant Distribution  
For the plant distribution side of the business, we employ two key variables to determine replacement volume: 
asset defect rate and volumetric forecasting. Estimating replacement volume through asset defect rate can 
cause some limitations. This approach necessitates forecasting multiple variables, specifically the defect rate 
and asset population. The challenge here lies in the joint error associated with these variables, which affects 
the accuracy of the final value.  

Transformers and Switchgears 
Transformers’ defects can be influenced by several factors, such as equipment specifications, environmental 
conditions, and loading conditions. Each of these variables can significantly impact the operational life of these 
devices. Unfortunately, the absence of these crucial data elements limits the predictive capabilities. Similarly, 
switchgear exhibits distinctive characteristics that might influence operational life, such as distance to the zone 
substation or proximity to the coast. However, as defect notifications are predominantly raised against the 
nearest pole, connecting the timing and cause of these notifications to the specific asset posed as a limitation 
for both asset types. 

To attain a more comprehensive view of asset replacement patterns, the availability and combination of 
historical failure data, structural data, and environmental data were used. Historical failure data encompasses 
records of previous failures or inspections. Structural data includes detailed equipment specifications, and 
environmental data encompasses information about environmental conditions and loading. When combined, 
this holistic dataset equips stakeholders with the insights needed to mitigate current risks by prioritizing the 
replacement of the riskiest assets. This holistic approach enhances the understanding of the operational assets 
and their expected service life over the next 5 to 10 years. Additionally, it reduces corrective maintenance 
costs, improves reliability, and supports well-informed investment decisions aimed at minimizing customer 
interruptions. 

Underground Cables 
For underground cables, their replacement cost depends on the cable's length and location, not the occurrence 
of defect notifications. However, the analysis present primarily relies on the notifications, which can complicate 
cost predictions. To improve the forecasting capability, features such as the cable type, installation year, and 
the cable's length each time a replacement is made. This information provides insights into the cable's 
condition at various locations and the proportion of cables posing a risk. Additionally, it's operationally 
convenient to replace entire cable sections in one go. Therefore, clustering cables can further enable a more 
realistic predictions about the lengths of replacement needed, leading to a better estimate of the replacement 
costs for the next 5 to 10 years. 

Line Assets Comparison 
For Line assets, the availability of more comprehensive and structured data enables the exploration and 
application of a broader spectrum of forecasting approaches, enhancing predictive accuracy. The constraints 
faced in the current approaches predominantly stem from limitations in data availability and quality. 

Compliance with AER Requirements & Recommendations for Improvement 
The replacement volume is categorized into specific asset groupings. However, the raw data available doesn't 
align directly with these categories. As a result, we had to make multiple imputations, particularly for the 
switchgear and underground asset groupings (accounting for 40% of the imputations), which served as the 
basis for our replacement volume analysis. To enhance this process, we recommend including these specific 
information fields as a requirement during data collection and processing, ensuring a more streamlined and 
accurate analysis. 

In conclusion, refining the forecasting methodologies through enhanced data utilization and methodological 
adjustments will bolster the accuracy of asset replacement volume predictions, supporting informed decision-
making and optimize operational strategies.  
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7. Appendices 
 

Appendix 1: 

Location Code Location 
BAL BALLARAT 
BEN BENDIGO 
GEE GEELONG 
HOR HORSHAM 
MIL MILDURA 
SHE SHEPPARTON 
SUN SUNSHINE 
WAR WARNAMBOOL 
BAL BALLARAT 

 

Appendix 2 

Data Cleaning Rules for Line Asset: 

Wood Pole Decay Rate Model: 

• Construction Year between 1800 and 2022 
• Decay in measurements needs to be positive 
• Time difference between inspections for the same equipment needs to be at least one year 
• Measurement date needs to be later than construction year 
• Records with more than 10 years in time duration but no measurement changes are removed 
• Sound wood thickness needs to be less than 200 
• Unknown wood pole class is replaced by Class 3 
• If there is inconsistency between measurements of the same equipment (i.e., when the 

measurement increases in one of its inspections), this record is removed 
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