# **Cost Benefit Analysis Enhancement –**

**Ergon Energy Draft vs RRP Submission** 



**David Wu & Jake Buckland** 

October 2024

## Summary

#### **Revised Cost Benefit Analysis (CBA):**

- Revised based on EMCA / AER feedback from Draft submission
- Improved cost benefit analysis (compared to draft submission model) by introducing prioritisation using riskbased approach.
- Applied the benefit analysis periods based on asset expected life (50 years benefit for poles, 35 years benefit for pole top structures).
- Compared feasible interventions.
- Data quality validation.
- Validation of modelled risk value vs actual data such as outage history and disposed assets information.





## **Progression Between Models - Poles**

| Enhancements                                                           | Draft Submission                           | AER Visit Oct'24 Analysis                              | RRP Submission                                                                                                                                     |
|------------------------------------------------------------------------|--------------------------------------------|--------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| Individual Pole                                                        | Calculated health index                    | Calculated health index, estimated optimised timing    | Calculated health index, estimated optimised timing                                                                                                |
| Benefit Analysis Period                                                | 20 years                                   | 50 years benefit (based on expected life)              | 50 years (based on expected life)                                                                                                                  |
| Replacement Prioritisation                                             | Based on health index ( for model purpose) | Risk based ( for model purpose)                        | Risk Based ( for model purpose)                                                                                                                    |
| Data Quality Validation                                                | Accepted given data                        | Validation against defect history                      | Validation against actual<br>decommission, removed disposed<br>poles (leads to reduction in optimised<br>pole in first year from 50,000 to 22,248) |
| LV Feeder Reliability Cost                                             | Based on upstream feeder - average load    | Based on upstream feeder - average load                | Based on average LV feeder load from<br>'Actual historical load information'<br>(leads to more realistic risk value)                               |
| Degraded Reliability Cost                                              | 10% of feeder reliability cost             | 1% of feeder reliability cost                          | 1% of feeder reliability cost                                                                                                                      |
| VCR Derivation                                                         | Average AER 2022: \$47.27                  | Average AER 2022: \$47.27                              | Weighted Average AER 2023: \$53.47                                                                                                                 |
| Year 1 Total Risk Cost (16,600pa<br>Defective Pole Replacement Volume) | \$266,025,735                              | \$106,871,224                                          | \$88,914,775                                                                                                                                       |
| Risk Cost Validation                                                   | Compared intervention options              | Sample checks on actual unassisted pole failure outage | 3 year historical actual unassisted pole<br>failure outage (\$20.7m) vs year 1<br>modelled reliability risk cost (\$18.2m)                         |

## **Progression Between Models – Pole Top Structure**

| Enhancements                                                                 | Draft Submission               | AER Visit Oct'24 Analysis                   | RRP Submission                                                                                                    |
|------------------------------------------------------------------------------|--------------------------------|---------------------------------------------|-------------------------------------------------------------------------------------------------------------------|
| Analysis Period                                                              | 20 years                       | 35 years                                    | 35 years                                                                                                          |
| Replacement Prioritisation                                                   | Probability of failure         | Highest risk                                | Highest risk                                                                                                      |
| Risk Cost (Safety, Financial,<br>Reliability & Bushfire)                     | Grouped by age                 | Cost for each individual pole top structure | Cost for each individual pole top structure                                                                       |
| Degraded Safety Cost                                                         | 5% of safety cost              | Removed                                     | Removed                                                                                                           |
| Location Safety Factor                                                       | Not used                       | Yes                                         | Yes                                                                                                               |
| Degraded Reliability Cost                                                    | 10% of feeder reliability cost | 1% of feeder reliability cost               | 1% of feeder reliability cost                                                                                     |
| Degraded Bushfire Cost                                                       | 10% of bushfire cost           | Removed                                     | Removed                                                                                                           |
| VCR Derivation                                                               | Average AER 2022: \$47.27      | Average AER 2022: \$47.27                   | Weighted Average AER 2023:<br>\$53.47                                                                             |
| Year 1 Total Risk Cost (9,000pa<br>Defective Pole Top Replacement<br>Volume) | \$188,026,162                  | \$75,223,839                                | \$52,141,280                                                                                                      |
| Risk Cost Validation                                                         | Compared intervention options  | Compared intervention options               | 3 year historical actual unassisted<br>pole top failure outage vs year 1<br>modelled reliability cost (\$11.6m vs |

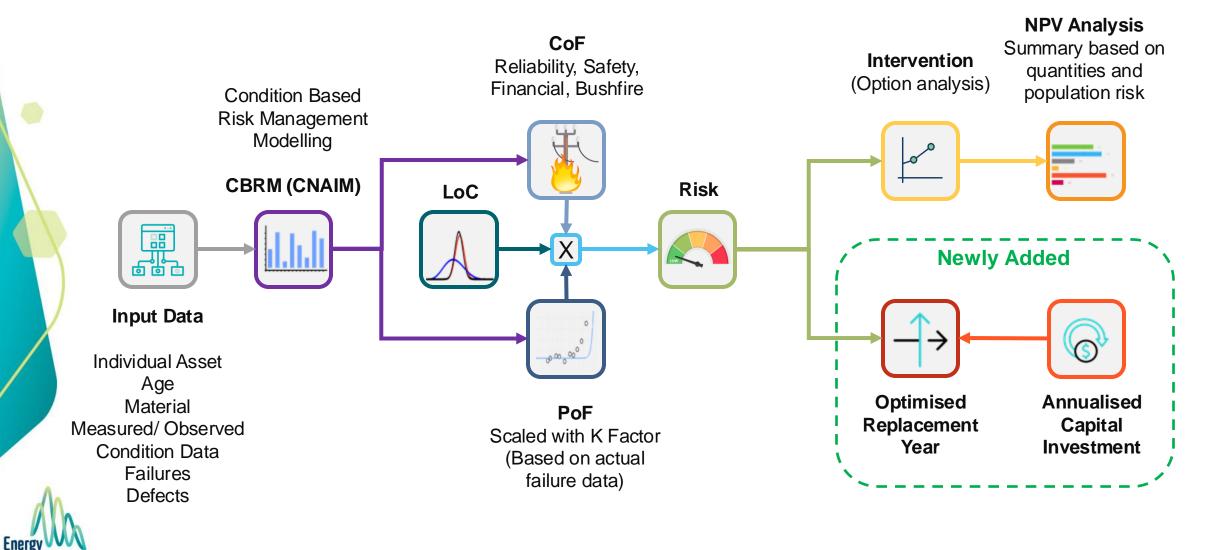
\$4.1m)



## **Optimised Pole Model: How It Works**



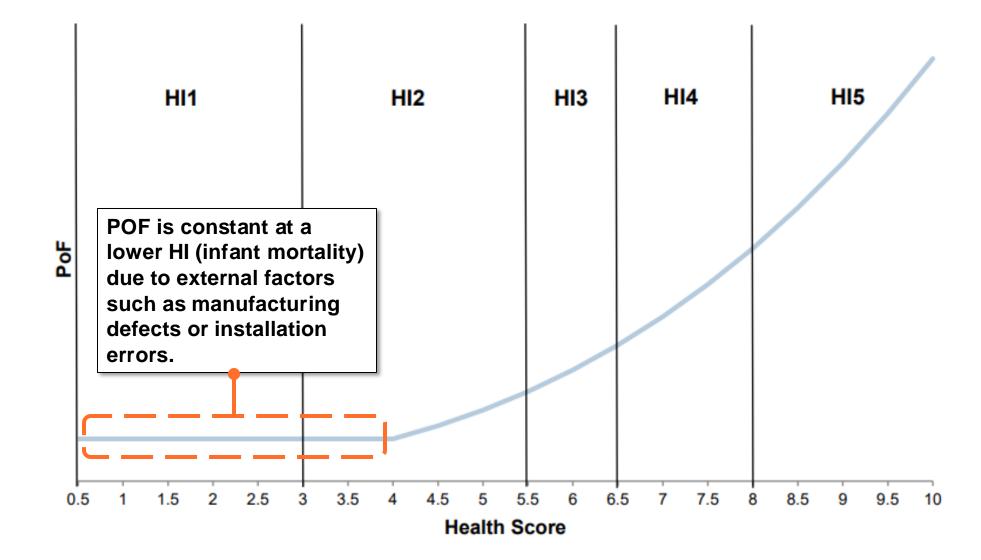
- Failures
- Defects


#### Intervention

- Energy
- Set replacements volumes 5 year investment
- 50-year analysis period based on an average pole life expectancy
- **Replace on highest risk** reset HI to 0.5 capital replacement cost only no risk
- Catastrophic failures, degraded and nailed assets generated full monetised risk

Derived optimised replacement timing for individual poles

**Optimised** 


## **Predictive Modelling Process**



Oueensland

## **Relationship Between PoF and HI**

PoF



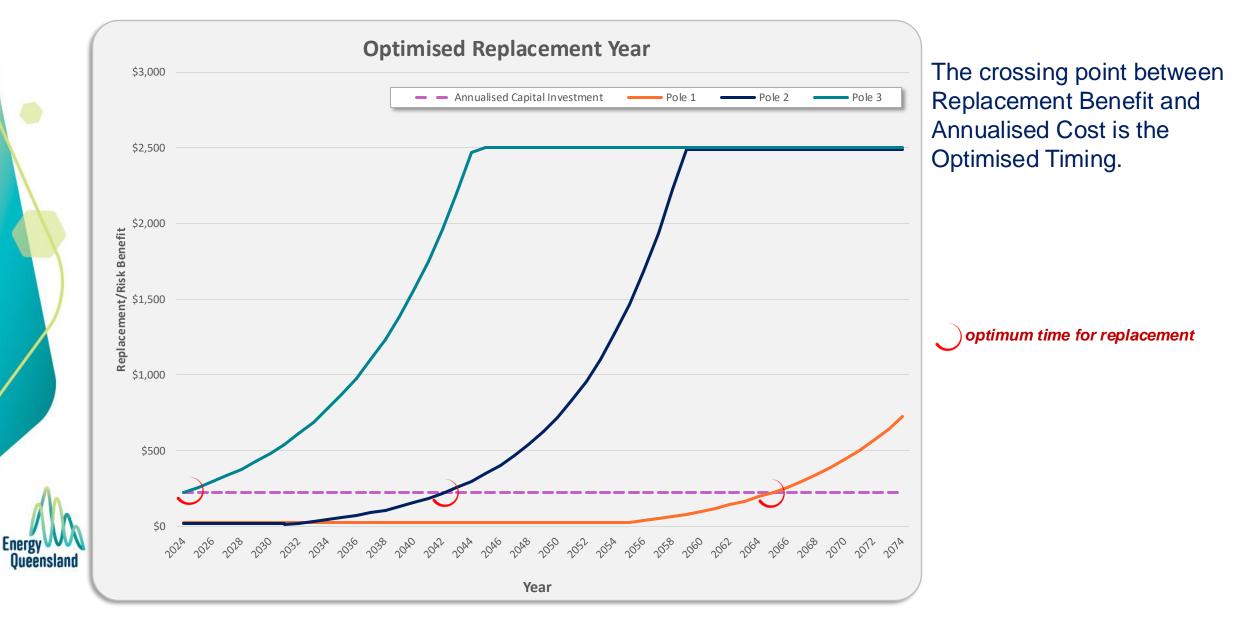
## **Optimised Pole Replacement** (Annualised Capital investment)

The cost of the pole per year depending on how long the expected life is;

WACC  $Annualised \ Replacement \ Cost = Replacement \ Unit \ Cost \times \frac{1 - (1 + WACC)^{-expected \ life}}{1 - (1 + WACC)^{-expected \ life}}$ 

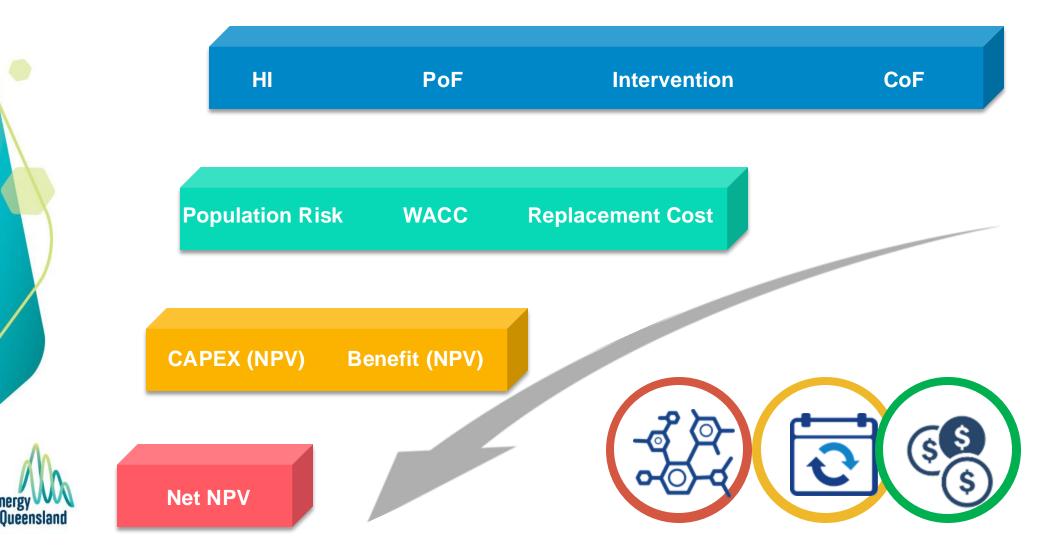
#### Where;

- *Replacement Unit Cost: The cost to replace one unit of asset*
- WACC: Weighted Average Cost of Capital (3.5% used)
- Expected Life: Years of useful asset life


#### **Example : For a pole**

Costs: \$6,236 (Based on CoF) with an expected life of 60 years

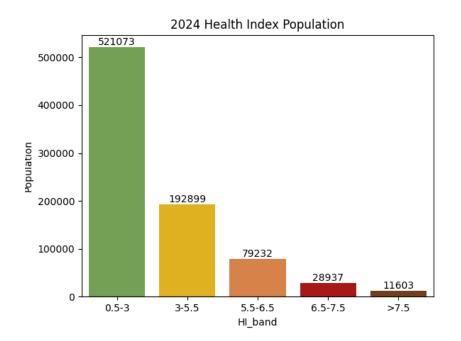
= \$5,679 x 0.035 / 1-(1+0.035)<sup>-60</sup> = \$227




## **Optimised Replacement Time**



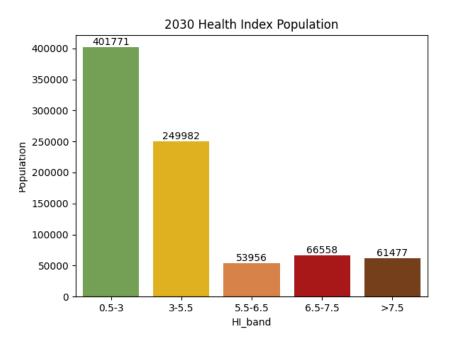
## Net Present Value (NPV) Analysis


The process to calculate the net present value of the intervention options.



## **Ergon Energy - Poles**




## Health Index (HI) Profile in 2024



After detailed interrogation and data validation, the number of poles with HI greater than 7.5 is 11,603 as of year 2024.

| Health Index Range | Draft Submission<br>2024 | AER Visit Oct'24 Analysis<br>2024 | RRP Submission<br>2024 |
|--------------------|--------------------------|-----------------------------------|------------------------|
| 0.5 – 3.0          | 560,889                  | 560,737                           | 521,073                |
| 3.0 – 5.5          | 183,817                  | 205,600                           | 192,899                |
| 5.5 – 6.5          | 40,115                   | 48,977                            | 79,232                 |
| 6.5 – 7.5          | 46,475                   | 29,179                            | 28,937                 |
| 7.5+               | 34,913                   | 21,716                            | 11,603                 |

## Health Index Profile in 2030 (with no intervention)



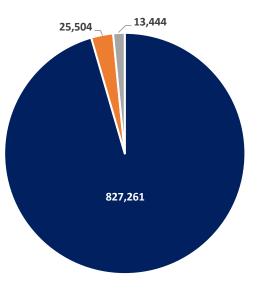
As of 2030, the number of poles beyond HI of 7.5 is 61,477 as predicted by the model using the 'below ground' condition monitoring measurements.

| Health Index Range | Draft Submission<br>2030 | AER Visit Oct'24 Analysis<br>2029 | RRP Submission<br>2030 |
|--------------------|--------------------------|-----------------------------------|------------------------|
| 0.5 – 3.0          | 477,066                  | 490,920                           | 401,771                |
| 3.0 – 5.5          | 185,559                  | 225,449                           | 249,982                |
| 5.5 – 6.5          | 79,099                   | 47,941                            | 53,956                 |
| 6.5 – 7.5          | 33,487                   | 35,778                            | 66,558                 |
| 7.5+               | 90,998                   | 66,121                            | 61,477                 |

## Model Validation (HI) with Unserviceable Poles

- Unserviceable poles are driven by two types of degradation (see the table below):
  - Approximately 70% of defective poles replaced are based on "below ground" degradation
  - Approximately 30% of defective poles replaced are based on "above ground" degradation
- The model can <u>ONLY</u> estimate the "below ground" degradation using the condition monitoring measured data of the sound wood. There are no condition threshold available with "above ground" degradation to be used as a measured condition.
- It is anticipated that approximately 30% more unserviceable poles (due to "above ground" degradation) will not be captured by the predictive model, particularly those with an HI above 7.5.
  - By 2030, the model predicts 61,477 unserviceable poles due to "below ground" degradation. Accounting for an additional 30% (26,348 poles) with "above ground" degradation, which the model cannot predict, the total forecast for unserviceable poles in 2030 is estimated to be between 87,000 to 88,000.

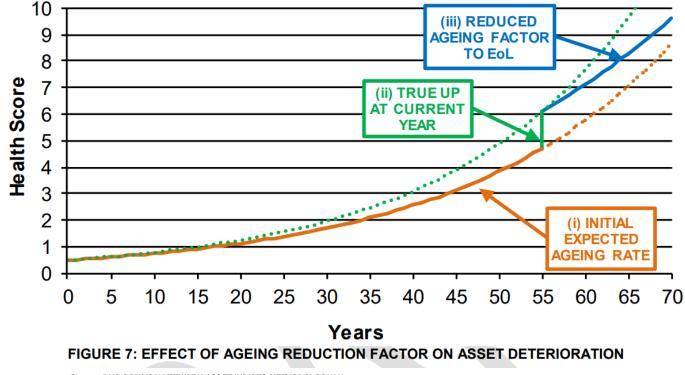
| Actual Unserviceable History | FY 2020 | FY 2021 | FY 2022 | FY 2023 | FY 2024 |
|------------------------------|---------|---------|---------|---------|---------|
| Below Ground Condition       | 68%     | 72%     | 71%     | 70%     | 71%     |
| Above Ground Condition       | 32%     | 28%     | 29%     | 30%     | 29%     |




### Model Validation (HI) with Disposed Defective Pole Data

A comparison of poles with a modelled HI greater than 8 against historical defect data showed that these poles had already been decommissioned, though this information was not promptly updated in the system due to delays in the decommissioning process.

This finding confirms the model's ability to consistently predict unserviceability for poles with an HI above 8, as expected.


Consequently, these decommissioned assets have been removed from the model to align it more closely with the actual network conditions.



**Removed Defective Pole** 

## Model Validation (HI) with Rapid Degradation

The model cannot predict poles that undergo rapid degradation between inspections (e.g., sound wood thickness declining from 100mm to 30mm within five years) because its aging degradation curve follows CBRM CNAIM principles, which may not account for such sudden changes.



Source: DNO COMMON NETWORK ASSET INDICES METHODOLOGY V4

## **Total Risk Cost**

Reduction in risk cost against previous draft determination submission model vs the revised regulatory proposal (matured) model.

| Draft Submission                    | Year 1 Risk       | Year 5 Risk       | Year 20 Risk      |
|-------------------------------------|-------------------|-------------------|-------------------|
| Counterfactual (16622)              | \$<br>266,025,735 | \$<br>250,968,123 | \$<br>528,865,973 |
| REPEX Cost Scenario (10413)         | \$<br>282,622,408 | \$<br>280,882,791 | \$<br>675,113,069 |
| Health Index (13250)                | \$<br>274,396,216 | \$<br>265,117,605 | \$<br>605,497,678 |
| REPEX Live Scenario (5745)          | \$<br>299,038,054 | \$<br>323,105,525 | \$<br>885,397,020 |
| Counterfactual +2k Targeted (18622) | \$<br>261,058,113 | \$<br>244,859,273 | \$<br>494,488,547 |

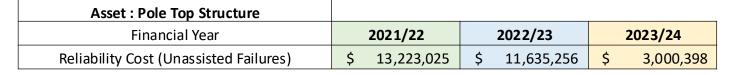
| AER Visit Oct'24 Analysis                     | Year 1 Risk       | Year 5 Risk       | Year 50 Risk        |
|-----------------------------------------------|-------------------|-------------------|---------------------|
| Counterfactual - Pre 2018-19 Volume (8000)    | \$<br>109,672,741 | \$<br>117,578,040 | \$<br>1,461,783,749 |
| 1 - Replaced Failed Poles                     | \$<br>111,962,309 | \$<br>135,609,650 | \$<br>1,541,318,769 |
| 2 - Low Volume (5000)                         | \$<br>110,953,842 | \$<br>122,317,094 | \$<br>1,490,414,404 |
| 3 - Proposed Volume (16600)                   | \$<br>106,871,224 | \$<br>105,179,583 | \$<br>1,353,128,927 |
| 4 - Proposed + 10000 Low Strength (3kN) Poles | \$<br>104,912,869 | \$<br>102,943,975 | \$<br>1,248,044,862 |
| 5 - Proposed + 20000 Low Strength (3kN) Poles | \$<br>104,624,867 | \$<br>102,923,196 | \$<br>1,221,872,439 |

| RRP Submission                                | Year 1 Risk      | Year 5 Risk       | Year 50 Risk        |
|-----------------------------------------------|------------------|-------------------|---------------------|
| Counterfactual - Pre 2018-19 Volume (8000)    | \$<br>90,854,594 | \$<br>102,277,021 | \$<br>1,421,217,027 |
| 1 - Replaced Failed Poles                     | \$<br>91,520,377 | \$<br>111,016,947 | \$<br>1,464,522,572 |
| 2 - Low Volume (5000)                         | \$<br>91,509,380 | \$<br>105,365,778 | \$<br>1,441,813,307 |
| 3 - Proposed Volume (16600)                   | \$<br>88,302,658 | \$<br>92,046,153  | \$<br>1,338,455,271 |
| 4 - Proposed + 10000 Low Strength (3kN) Poles | \$<br>86,932,376 | \$<br>88,676,670  | \$<br>1,231,826,041 |
| 5 - Proposed + 20000 Low Strength (3kN) Poles | \$<br>86,542,994 | \$<br>88,660,488  | \$<br>1,212,465,981 |

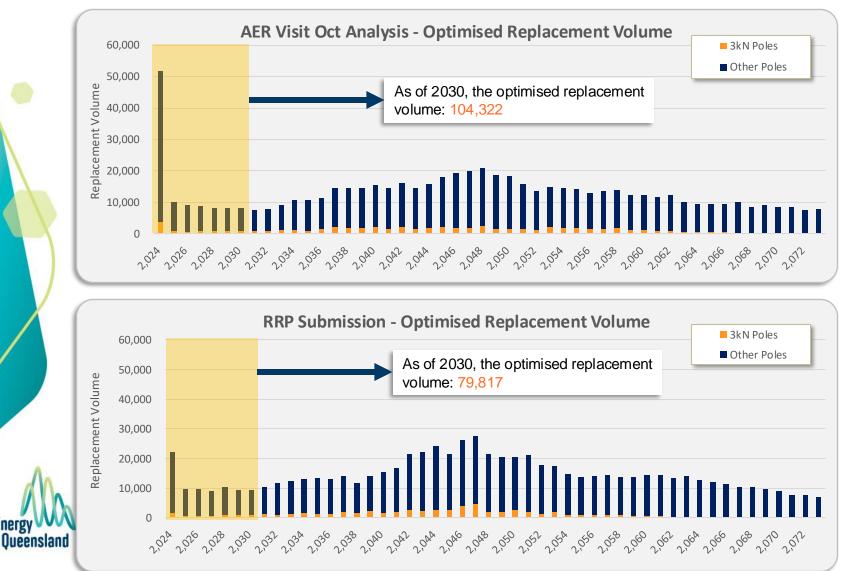


## Model Validation (Risk Cost) with Actual Outage Data

The actual outage data was collected for each unassisted pole failure:


- 1. For all the outages, the unserved energy to the customer was obtained, including the restoration time.
- 2. The VCR \$53.47/kWh value is derived from the weight average calculation based on the AER 2023 VCR publication.
- 3. Using the \$53.47/kWh, the reliability cost is calculated for each unassisted failure.
- 4. This reliability cost is then compared with the predictive model's reliability risk cost output.
- 5. The same concept is applied to pole top structures.

VCR Used


- In the FY2022-23, the <u>outage reliability cost</u> due to unassisted pole failures of <u>\$20.7m</u> (shown in the table below) is comparable with the <u>year 1 predictive model output</u> of <u>\$18.2m</u>.
- In the FY2022-23, the <u>outage reliability cost</u> due to unassisted pole top structure failures of \$11.6m (shown in the table below) is comparable with the <u>year 1 predictive model output</u> of 14.9m.

\$53.47/kWh

| Asset : Poles                          |                  |                  |                  |
|----------------------------------------|------------------|------------------|------------------|
| Financial Year                         | 2021/22          | 2022/23          | 2023/24          |
| Reliability Cost (Unassisted Failures) | \$<br>11,294,252 | \$<br>20,706,765 | \$<br>19,548,900 |



## **Optimised Pole Replacement**



- The discrepancy between the optimised models presented during the October AER visit and the RRP submission arises from data quality validation efforts.
- Following the data quality validation, the optimized volume for the initial year (2024) decreased from 50,000 to 22,200. This reduction reflects the replacement or reinforcement of most poles with an estimated Health Index (HI) above 10, leading to their removal from the model to better represent the current network.

## **Can Ergon consider the Optimum Investment Plan?**

## The answer is "yes" if:

- Change in QLD "Distribution Authority" asset management
- Electrical Safety Office ESCOP limit removed
- Electrical Safety act change
- Change in policy requirement for rectification of defective pole timeline

# NPV Analysis – Replacement with <u>Wood</u> Pole

After all the required changes to the model in the RRP Submission model, the NPV results shown the proposed volume (option 3) is NPV positive and benefit to our customers.

<u>Please note</u>: Option 3 Proposed volume is our Expost actual volume (2018/19 to 2022/23) and also this is the same volume we proposing for our forecast (2025-30)

|                                               | Rank | Net NP | V incl CCPEX   | CAPEX (NPV)     | Benefit (NPV)             | CCPEX NPV     | CCPEX Benefits NPV |
|-----------------------------------------------|------|--------|----------------|-----------------|---------------------------|---------------|--------------------|
| Counterfactual                                | 5    |        | 0              | 0               | 0                         | \$0           | \$                 |
| Option 1 Historical Average                   | 4    |        | \$98,387,777   | -\$18,685,033   | \$121,587,710             | -\$6,792,145  | \$2,277,24         |
| Option 2 Health Index                         | 2    |        | \$572,938,131  | -\$173,262,304  | \$785,651,889             | -\$55,517,083 | \$16,065,62        |
| Option 3 AER REPEX Live Scenario              | 3    | :      | \$460,587,755  | -\$114,172,656  | \$601,437,875             | -\$37,714,124 | \$11,036,65        |
| Option 4 Actual Delivery                      | 1    |        | \$575,523,301  | -\$184,382,291  | \$797,401,422             | -\$51,223,639 | \$13,727,80        |
| AER Visit Oct'24 Analysis                     |      |        |                |                 |                           |               |                    |
| Intervention                                  |      | Rank   | Net NPV        | CAPEX (NP\      | /) Benefit (NPV)          | BCR           |                    |
| Counterfactual - Pre 2018-19 Volume (8000)    |      | 4      | \$0            | \$0             | \$0                       | 4             |                    |
| 1 - Replaced Failed Poles                     |      | 6      | -\$522,025,96  | 9 \$284,846,39  | -\$806,872,361            | . 5           |                    |
| 2 - Low Volume (5000)                         |      | 5      | -\$125,317,18  | 0 \$116,500,00  | -\$241,817,186            | 6             |                    |
| 3 - Proposed Volume (16600)                   |      | 1      | \$439,161,62   | 9 -\$285,884,76 | <b>51</b> \$725,046,390   | 1             |                    |
| 4 - Proposed + 10000 Low Strength (3kN) Poles |      | 2      | \$437,788,192  | 2 -\$564,605,17 | <b>71</b> \$1,002,393,363 | 3 2           |                    |
| 5 - Proposed + 20000 Low Strength (3kN) Poles |      | 3      | \$366,054,292  | 2 -\$664,791,07 | <b>78</b> \$1,030,845,37  | 0 3           |                    |
| NPV Analysis to Counterfactual                |      |        |                |                 |                           |               |                    |
| Intervention                                  | Ra   | ank    | Net NPV        | CAPEX (NPV)     | Benefit (NPV)             | BCR Ranl      | k                  |
| Counterfactual - Pre 2018-19 Volume (8000)    |      | 4      | \$0            | \$0             | \$0                       | 4             |                    |
| 1 - Replaced Failed Poles                     |      | 6      | -\$187,889,627 | \$314,290,891   | -\$502,180,518            | 5             |                    |
| 2 - Low Volume (5000)                         |      | 5      | -\$86,177,397  | \$108,328,000   | -\$194,505,397            | 6             |                    |
| 3 - Proposed Volume (16600)                   |      | 3      | \$380,460,391  | -\$314,971,405  | \$695,431,796             | 1             |                    |
| 4 - Proposed + 10000 Low Strength (3kN) Poles |      | 1      | \$530,552,513  | -\$583,812,502  | \$1,114,365,015           | 2             |                    |
| 5 - Proposed + 20000 Low Strength (3kN) Poles |      | 2      | \$489,858,444  | -\$663,372,171  | \$1,153,230,616           | 3             |                    |



## **NPV Analysis – Alternative Pole Material**

NPV analysis were also conducted for alternative replacement pole materials – concrete and composite. The replacement expenditure of these alternative material is more than wood pole, but this did not impact the outcome for our proposed volume.

| NPV Analysis - <mark>Concrete Poles</mark>    |      |                |                  |                  |          |
|-----------------------------------------------|------|----------------|------------------|------------------|----------|
| Intervention                                  | Rank | Net NPV        | CAPEX (NPV)      | Benefit (NPV)    | BCR Rank |
| Counterfactual - Pre 2018-19 Volume (8000)    | 4    | \$0            | \$0              | \$0              | 4        |
| 1 - Replaced Failed Poles                     | 6    | -\$540,388,347 | \$592,232,544    | -\$1,132,620,892 | 6        |
| 2 - Low Volume (5000)                         | 5    | -\$111,586,789 | \$236,068,947    | -\$347,655,736   | 5        |
| 3 - Proposed Volume (16600)                   | 2    | \$343,494,022  | -\$588,843,630   | \$932,337,653    | 1        |
| 4 - Proposed + 10000 Low Strength (3kN) Poles | 1    | \$416,871,815  | -\$1,129,302,916 | \$1,546,174,731  | 2        |
| 5 - Proposed + 20000 Low Strength (3kN) Poles | 3    | \$318,877,392  | -\$1,291,615,053 | \$1,610,492,445  | 3        |

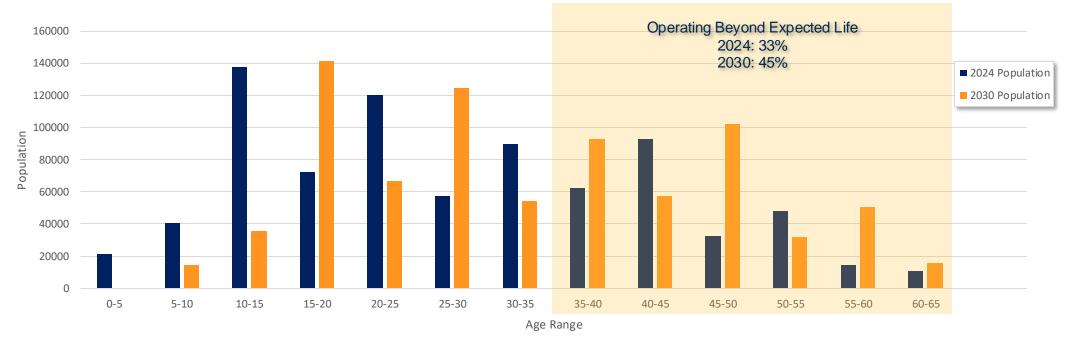
| Intervention                                  | Rank | Net NPV          | CAPEX (NPV)      | Benefit (NPV)    | BCR Rank |
|-----------------------------------------------|------|------------------|------------------|------------------|----------|
| Counterfactual - Pre 2018-19 Volume (8000)    | 3    | \$0              | \$0              | \$0              | 4        |
| 1 - Replaced Failed Poles                     | 6    | -\$1,248,910,077 | \$797,224,600    | -\$2,046,134,677 | 6        |
| 2 - Low Volume (5000)                         | 5    | -\$359,155,184   | \$326,397,440    | -\$685,552,624   | 5        |
| 3 - Proposed Volume (16600)                   | 1    | \$98,488,386     | -\$1,044,897,567 | \$1,143,385,953  | 1        |
| 4 - Proposed + 10000 Low Strength (3kN) Poles | 2    | \$34,698,073     | -\$1,919,966,941 | \$1,954,665,014  | 2        |
| 5 - Proposed + 20000 Low Strength (3kN) Poles | 4    | -\$128,003,576   | -\$2,172,212,730 | \$2,044,209,153  | 3        |



## NPV Analysis – Wood vs Alternate Material

NPV analysis comparing the Replacement with wood pole option with concrete and composite options. The outcome reflects the wood pole option is the cost benefit solution to maintain the service level of our customers.

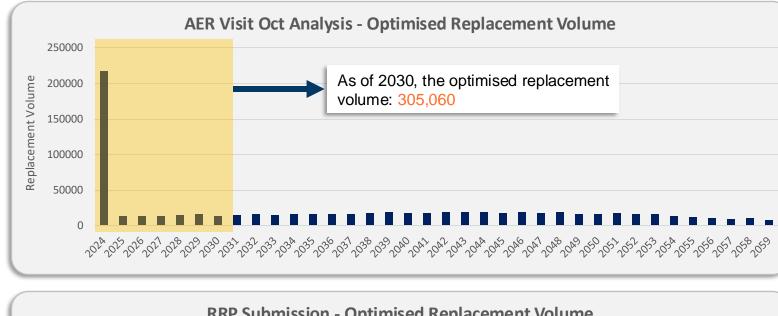
| NPV Analysis to Counterfactual                       |      |                  |                  |                  |          |
|------------------------------------------------------|------|------------------|------------------|------------------|----------|
| Intervention                                         | Rank | Net NPV          | CAPEX (NPV)      | Benefit (NPV)    | BCR Rank |
| Counterfactual - Pre 2018-19 Volume (8000) - Wood    | 3    | \$0              | \$0              | \$0              | 3        |
| 1 - Replaced Failed Poles - Wood                     | 5    | -\$187,889,627   | \$314,290,891    | -\$502,180,518   | 4        |
| 2 - Low Volume (5000) - <b>Wood</b>                  | 4    | -\$86,177,397    | \$108,328,000    | -\$194,505,397   | 5        |
| 3 - Proposed Volume (16600) - Wood                   | 2    | \$380,460,391    | -\$314,971,405   | \$695,431,796    | 2        |
| 4 - Proposed Volume (16600) - Concrete               | 6    | -\$2,658,890,817 | -\$871,281,199   | -\$1,787,609,618 | 6        |
| 5 - Proposed Volume (16600) - Composite              | 7    | -\$5,810,001,467 | -\$1,535,380,707 | -\$4,274,620,760 | 7        |
| 6 - Proposed + 10000 Low Strength (3kN) Poles - Wood | 1    | \$1,039,131,613  | -\$583,812,502   | \$1,622,944,115  | 1        |



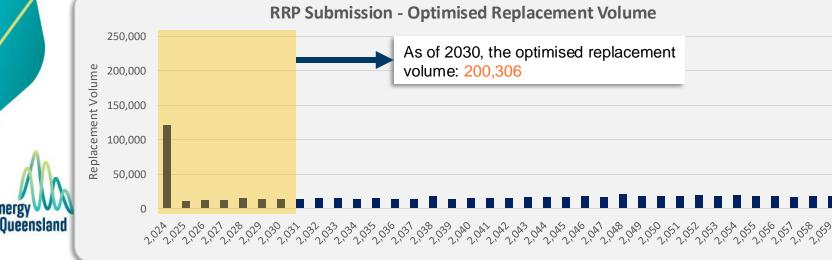

# Ergon Energy – Pole Top Structure (Crossarm)



## **Age Profile**


The age of pole top structures are inferred from poles. Currently, 33% of pole top structures are operating beyond it's expected life in the network.




Pole Top Structure Population – RRP Submission



## **Optimised Pole Top Structure Replacement**



- Difference between optimised models during the October AER visit vs RRP submission due to data quality validation done to the pole (refer slide 9).
- As a result, the optimised pole top volume reduced from 218,000 to 121,000 in 2024.



## **Total Risk Cost**

Reduction in risk cost against previous draft determination submission model vs the revised regulatory proposal (matured) model.

| Draft Submission                  | Year 1 Risk       |    | Year 5 Risk | Year 10 Risk |             |    | Year 20 Risk |
|-----------------------------------|-------------------|----|-------------|--------------|-------------|----|--------------|
| Counterfactual                    | \$<br>188,026,162 | \$ | 206,350,633 | \$           | 334,889,569 | \$ | 417,793,572  |
| 1. Counterfactual +50% Targeted   | \$<br>188,026,162 | \$ | 189,203,237 | \$           | 324,218,630 | \$ | 408,463,929  |
| 2. Counterfactual -50%            | \$<br>131,173,633 | \$ | 196,179,748 | \$           | 419,401,675 | \$ | 499,295,736  |
| 3. Counterfactual +7,000 Targeted | \$<br>188,026,162 | \$ | 179,803,516 | \$           | 318,363,108 | \$ | 403,339,435  |

| AER Visit Oct'24 Analysis                        | Year 1 Risk      | Year 5 Risk |             | Year 10 Risk      | Year 20 Risk |             | Year 35 Risk      |
|--------------------------------------------------|------------------|-------------|-------------|-------------------|--------------|-------------|-------------------|
| Counterfactual: Historical Defect Average (8736) | \$<br>75,223,839 | \$          | 80,004,097  | \$<br>111,120,213 | \$           | 196,606,817 | \$<br>385,793,020 |
| 1 - Replaced Failed Pole Top Structure           | \$<br>80,518,238 | \$          | 103,690,204 | \$<br>140,834,774 | \$           | 239,581,017 | \$<br>447,898,926 |
| 2 - Defect + Targeted (3500)                     | \$<br>73,315,670 | \$          | 72,894,491  | \$<br>102,146,810 | \$           | 183,514,730 | \$<br>366,737,299 |
| 3 - Defect + Targeted (7000)                     | \$<br>71,529,618 | \$          | 66,555,771  | \$<br>94,173,287  | \$           | 171,958,751 | \$<br>350,074,609 |
| 4 - Optimum Replacement Volume (51135)           | \$<br>57,453,418 | \$          | 26,716,541  | \$<br>41,903,075  | \$           | 90,978,781  | \$<br>224,573,266 |

| RRP Submission                                   | Year 1 Risk |            | Year 5 Risk |            |    | Year 10 Risk | Year 20 Risk |             |    | Year 35 Risk |  |  |
|--------------------------------------------------|-------------|------------|-------------|------------|----|--------------|--------------|-------------|----|--------------|--|--|
| Counterfactual: Historical Defect Average (8736) | \$          | 52,141,280 | \$          | 56,338,972 | \$ | 78,139,932   | \$           | 137,550,499 | \$ | 267,223,491  |  |  |
| 1 - Replaced Failed Pole Top Structure           | \$          | 55,385,816 | \$          | 71,417,163 | \$ | 96,882,694   | \$           | 164,237,906 | \$ | 305,098,696  |  |  |
| 2 - Defect + Targeted (3500)                     | \$          | 50,952,521 | \$          | 51,551,714 | \$ | 72,189,143   | \$           | 129,092,536 | \$ | 255,296,194  |  |  |
| 3 - Defect + Targeted (7000)                     | \$          | 49,831,284 | \$          | 47,243,095 | \$ | 66,769,164   | \$           | 121,238,378 | \$ | 243,979,738  |  |  |
| 4 - Optimum Replacement Volume (34528)           | \$          | 44,528,985 | \$          | 29,777,474 | \$ | 44,259,376   | \$           | 87,365,065  | \$ | 193,186,480  |  |  |



## **NPV Analysis**

Uueensiano

Reduction in risk cost against previous draft determination submission model vs the revised regulatory proposal (matured) model.

| Draft Submission<br>Intervention          | Rank | Net NPV |             | Additional Cost    | Benefit               |              |
|-------------------------------------------|------|---------|-------------|--------------------|-----------------------|--------------|
| Counterfactual (8736)                     | 3    |         | \$0         | Additional Cost    | \$0                   | \$(          |
| 1. Counterfactual +50% Targeted (13255)   | 2    | \$1     | 127,940,476 | -\$30,972,         | 316 \$                | 5158,912,791 |
| 2. Counterfactual -50% (4368)             | 4    | -\$5    | 571,694,273 | \$27 <b>,</b> 229, | 463 - <mark>\$</mark> | 598,923,736  |
| 3. Counterfactual +7,000 Targeted (15736) | 1    | . \$1   | 98,142,825  | -\$47,978,         | 920 Ş                 | 246,121,745  |

| AER Visit Oct Analysis                           |      |                 |                |                |               |
|--------------------------------------------------|------|-----------------|----------------|----------------|---------------|
| Intervention                                     | Rank | Net NPV         | CAPEX (NPV)    | Benefit (NPV)  | BCR           |
| Counterfactual: Historical Defect Average (8736) | 4    | \$0             | \$0            | )              | \$0 4         |
| 1 - Replaced Failed Pole Top Structure           | 5    | -\$558,159,449  | \$134,490,444  | 4 -\$692,649,8 | <mark></mark> |
| 2 - Defect + Targeted (3500)                     | 3    | \$158,941,932   | -\$52,570,397  | \$211,512,3    | 329 1         |
| 3 - Defect + Targeted (7000)                     | 2    | \$295,625,618   | -\$103,021,711 | \$398,647,3    | 329 2         |
| 4 - Optimum Replacement Volume (51135)           | 1    | \$1,093,699,493 | -\$607,492,801 | \$1,701,192,2  | 95 3          |

| RRP Submission<br>Intervention                   | Rank | Net NPV        | CAPEX (NPV)            | Benefit (NPV)  | BCR                |
|--------------------------------------------------|------|----------------|------------------------|----------------|--------------------|
| Counterfactual: Historical Defect Average (8736) | 4    | \$C            | \$(                    | ט              | \$0 4              |
| 1 - Replaced Failed Pole Top Structure           | 5    | -\$293,117,179 | \$138,035,620          | ) -\$431,152,7 | <mark>'99</mark> 5 |
| 2 - Defect + Targeted (3500)                     | 3    | \$86,416,767   | -\$ <b>50,749,55</b> 1 | \$137,166,3    | 818 1              |
| 3 - Defect + Targeted (7000)                     | 2    | \$163,090,376  | -\$101,037,845         | \$\$264,128,2  | 22 2               |
| 4 - Optimum Replacement Volume (34528)           | 1    | \$440,974,704  | -\$368,664,018         | \$809,638,7    | 22 3               |

Strategy is to replace wood crossarm with Composite.

# **Thank You**

