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The Centre for Efficiency and Productivity Analysis

(CEPA)

CEPA (https://economics.uq.edu.au/cepa) was established at the University of Queensland

in 2003 to provide a focal point for research, consultancy and training in efficiency and produc-

tivity analysis in Australia and the Asia/Pacific Region. The staff of the Centre are involved

in all aspects of efficiency and productivity analysis, including firm-level, industry-level, and in-

ternational comparisons, in both private and government sectors. Measurement methods used

include: index numbers, data envelopment analysis (DEA), stochastic frontiers and econometric

production models.

The principal aims and objectives of the Centre are to undertake theoretical and applied

research, develop useful end-user-driven short courses and workshops and to develop computer

software for use by private and public sector organisations.
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1 Introduction

In this report we undertake a review of the estimated non-reliability output weights that are

currently used by the Australian Energy Regulator (AER) to run a benchmarking exercise for

energy service providers in Australia. The AER benchmarking exercise consists of a method-

ological procedure that can broadly be classified into three steps. In step one, a Leontief cost

function is estimated via non-linear least squares. In step two, the estimated parameters of the

Leontief cost function are used to calculate a set of weights for the non-reliability outputs. In step

three, these non-reliability output weights are used to construct multilateral Tornqvist indexes

of productivity change. The three steps are interconnected, in the sense that any computational

mistake done in one of the steps will carry over and change the results of the final benchmarking

analysis.

The AER found that there was a mistake in the computation of the non-reliability output

weights used in the multilateral total factor productivity (MTFP) index number computation.

The mistake was made in step one of the aforementioned procedure, during the estimation of

the Leontief cost function. This meant that the associated non-reliability output weights (and

the resulting benchmarking exercise) were affected by this numerical error. This error in the

computation of the weights was corrected in the 2020 AER benchmarking exercise. Following

this revision, the AER decided to conduct an independent review on how these output weights

are determined and calculated. The AER hired us to provide this independent review, with a

special focus on the following three requirements:

1. review current calculation of non-reliability output weights under the Leontief cost function

method used in the AER’s TFP and MTFP models to ensure they are currently correctly

estimated. This applies to both the distribution network service providers (DNSP) and the

transmission network service providers (TNSP) modelling under the index number approach

adopted by the AER;
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2. discuss the advantages and disadvantages of the Leontief cost function method for estimating

these output weights;

3. list and discuss alternative methods to the current (Leontief) model for estimating these

output weights and discuss the advantages/disadvantages of each.

In this brief report we are going to illustrate the results of our own independent calculations

for the non-reliability output weights. We have also considered feedback received from stakeholder

submissions on a draft of this report from Ausgrid, Evoenergy and Jemena. We do not feel that

this feedback changes significantly the original recommendations in our draft report and have

included (in section 7) an appendix to respond to this feedback.

We employ available data provided by the AER on which to base these calculations. We used

two different datasets to implement our calculations: one for the transmission network service

providers (TNSP) and the other one for the distribution network service providers (DNSP). These

datasets are publicly available and can be downloaded at the following link:

• https://www.aer.gov.au/authors/economic-insights1.

This is also the set of data that has been used by the AER to conduct its annual benchmarking

exercise. It should be pointed out here that these two datasets are an updated version of the

datasets used by the AER to conduct the revision of the output weights in 2020. The numerical

differences in the datasets are small, but these small numerical differences carry over to the

calculation of the non-reliability output weights. We decided to use the updated datasets in this

report, since the numerical differences in our calculated non-reliability output weights (compared

to the AER) fall within the normal range of variation of numerical optimization and are not

significantly different from the outcome that one would expect from the non-updated datasets.

1The specific links are: https://www.aer.gov.au/documents/economic-insights-2020-benchmarking-data-files-
distribution for the DNSP; and https://www.aer.gov.au/documents/economic-insights-2020-benchmarking-data-
files-transmission for the TNSP.
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The methodology for the estimation of the Leontief cost function and the subsequent compu-

tation of non-reliability output weights is described in two separate Economic Insights reports:

Lawrence et al. (2020b) describe it for the transmission network; and Lawrence et al. (2020a)

discuss it for the distribution network. These two reports are available online at the following

links (respectively for the TNSP and DNSP):

• https://www.aer.gov.au/documents/economic-insights-benchmarking-results-aer-transmission-

october-2020

• https://www.aer.gov.au/documents/economic-insights-benchmarking-results-aer-distribution-

october-2020

TFP and MTFP techniques measure the relationship between multiple outputs and multiple

inputs enabling a comparison of productivity across production units that share the same set of

inputs and outputs. In this respect it is important to be clear and transparent about the choice

of inputs and outputs used in the AER benchmarking exercise. The set of inputs and outputs

used in the transmission and distribution cases are similar in the aforementioned reports.

On the input side we have the opex cost and three measures of capital infrastructure: the

overhead lines, the underground lines and transformers and other assets. The dataset used by

Economic Insights and provided to us by the AER also includes Annual User Costs (AUC) for each

of the three capital stock measures: this is the total imputed cost of maintaining and enhancing

the three capital infrastructure measures used in the benchmarking assessment. This means that

the unit price for each capital stock input can be obtained and used in the estimation of the

Leontief cost function. The opex cost quantity index is determined by deflating the opex cost

dollar value by a price deflator (which adjusts for inflation pressures on the inputs accounted for

by the opex measure). This means that there are four input quantities and four input prices to

be used in the Leontief cost function model. This set of inputs is the same for the distribution

and the transmission case.
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On the output side, three outputs are common to both the TNSP and DNSP. These are:

energy delivered, ratcheted maximum demand and circuit length. The fourth output is the

number of customers, but its definition varies slightly between the two groups of energy service

providers. For the TNSP dataset the number of distribution customer numbers is used and for

the DNSP the number of customers is used. There are no available output prices (or output

revenue shares) that can be used for building an index of output quantity change. This means

that to obtain weights for these non-reliability outputs, one needs to compute a cost function and

then apportion cost to the various outputs. For completeness it is important to mention here

that, although not used in the Leontief cost function estimation, a reliability output is used in

the AER index number exercise. This output is used to provide a quantification of the reliability

of the TNSP and DNSP networks and it is obtained using a measure of the value of customer

reliability (VCR). The VCR provides a measure of how consumers value energy not supplied.

The current report will focus on providing a full revision of the calculations for the non-

reliability output weights based on these two datasets and the specified set of inputs and outputs.

We will use one panel dataset with 13 time periods (2006-2018) for 5 TNSP, for a total of 65

observations. And one panel dataset with 13 time periods (2006-2018) for 13 DNSP, for a total

of 169 observations.

This report will focus on the first two steps of the AER benchmarking exercise:

• Step 1: estimation of the Leontief cost function parameters via non-linear least squares.

• Step 2: computation of the non-reliability output weights based on the estimated parameters

of the Leontief cost function.

Numerical mistakes can happen both in the first and the second step. We therefore conducted

a computation of both steps to check the numerical correctness of the non-reliability output

weights that are used in the two benchmarking reports on transmission and distribution.

In section 2 we describe the Leontief cost function model and we provide our own set of
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estimates based on the non-linear least squares facility of STATA. In section 3 the non-reliability

output weights are computed and we compare them to the ones obtained by the AER. In section 4

some critical comments on the Leontief cost function method are provided. We point out how the

Leontief cost function is very flexible in fitting the data, but may present some challenges in terms

of the numerical stability of the parameter estimates obtained via non-linear least squares. In

section 5 some potential improvements on the current method are provided. These improvements

are intended to provide a potentially more numerically stable set of results, within the current

Leontief cost function framework. In this section we also point out the possibility of exploring

in the future the use of direct cost benchmarking. In section 7, we respond to feedback received

from stakeholder submissions on this report.

2 Estimation of the Leontief Cost Function

Consider a panel dataset of service providers, where there are k = 1, . . . ,K firms (service

providers) and there are t = 1, . . . , T time periods for which the inputs and outputs of the firms

are observed. For each firm in each time period, xkti is the quantity of input i = 1, . . . ,M used

by firm k in time period t, wkt
i the price of input i faced by the same firm, and yktj the quantity

of output j = 1, . . . , N produced by the firm. The cost function represents the minimum cost of

production that can be achieved for a given level of output, at the prevailing input prices and in

a given time period. The following is the definition of the cost function:

C(y, w, t) = min
x

{wx : x can produce y in time period t} (1)

and the input demands for such a cost function are given by the first derivatvie of this function

with respect to input prices (see Färe and Primont (1995) and O’Donnell (2018)). The cost

function used by the AER in its benchmarking exercise takes the following specific functional
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form:

C(ykt, wkt, t) =
∑
i

wkt
i

∑
j

(akij)
2yktj (1 + bki t) (2)

where the superscript index kt is identifying firm k in time period t. Notice that the cost

function is different for different firms, since the parameters of the cost function (akij , b
k
i ) are

dependent on k. This is a Leontief cost function, in the sense that no allowance is made for

substitution possibilities among inputs in the production of a given output. In other words the

inputs are perfect complements. The parameters akij represent the optimal quantity of input i

that is required to produce one unit of output j in firm k. The parameters bki are time trend

parameters and they account for the shift overtime of these input requirements. Taking the first

derivative of the Leontief cost function with respect to prices returns the input demand functions

for each firm in each time period:

xkti =
∑
j

(akij)
2yktj (1 + bki t), ∀i, k, t (3)

Since the quantity of input used on the left hand side and the quantity of output produced

(right hand side) are observed, this equation can be estimated in order to obtain values for the

parameters of interest (akij , b
k
i ). This involves estimating one regression for each input and each

firm using T observations. The purpose of taking the square of the coefficients akij is to impose

non-negativity constraints on those coefficients. These input demand functions are estimated by

Economic Insights using non-linear least squares (nls). It should be stressed that the Leontief

coefficients akij depends on i, k, j: this means that these coefficients not only are different for

different inputs and outputs, but they also vary across firms. The time trend parameter bki is also

different for different inputs and different firms.

In order to check the results of the Economic Insights reports, we have used the non-linear

least squares facility in STATA to obtain estimates of the parameters of the Leontief cost function
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(via the input demand equation estimation). To obtain our estimates, we have set the initial

parameter value estimates to the ones reported in the Economic Insights report2. We obtained

results for these parameters similar to the ones reported in the Economic Insights report. A full

set of results that includes the point estimates for each of the coefficients is reported in the excel

file associated with this submission. We are therefore confident that the parameter estimates

obtained by the Economic Insights report are close to the one we obtained, and well within the

tolerance level of standard numerical optimization procedures. The Leontief cost functions can

be then recovered by using the estimated values of these parameters.

The estimation of the Leontief cost function parameters represent the first step in the building

of MTFP indexes used by the AER and highlighted in the Economic Insights report. From

the parameter estimates of the Leontief cost function, it is possible to compute the cost share

attributed to each output by the Leontief cost function, and then average these shares to obtain

the average share for the whole dataset. We explain this procedure proposed by Economic Insights

in the next section and then provide the results of our own computation for the non-reliability

output weights.

3 Computation of Non-reliability output weights

The non-reliability output weights are derived from the estimated parameters of the Leontief

cost functions. Using a slightly different notation from the one used in the Economic Insight

reports, these weights can be computed in the following way:

rj =

∑
t

∑
k C

kt
j∑

t

∑
k

∑
j C

kt
j

, ∀j (4)

where Ckt
j =

∑
iw

kt
i (akij)

2yktj (1 + bki t) is the predicted cost associated with output j in firm k

and time period t (obtained as the sum over all input costs i). The parameters of the Leontief

2We took the numerical value of these estimates approximated to the third decimal place.
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cost function are the point estimates obtained via non-linear least squares. These are the weights

subsequently used in the index number benchmarking exercise by the AER. One can readily

compute also these same weights for each observation in each time period as follows:

rktj =
Ckt
j∑

j C
kt
j

, ∀k, t, j (5)

The average weight is obtained as a weigthed average of this last set of weigths where the

weighting system is the cost share of each observation:

αkt
j =

Ckt
j∑

t

∑
k

∑
j C

kt
j

, ∀k, t, j (6)

It is easy to verify that rj =
∑

t

∑
k α

kt
j rktj . We follow the Economic Insights report and only

provide the results of our computations for the average non-reliability output weights rj . In the

excel file associated with this submission, we report the full set of non-reliability output weights

rktj for all observations in all time periods. Any numerical mistake will affect both the observation

specific weights rktj and their average rj .

We computed both the shares in equation (5) and their average in equation (4) using the

aforementioned weighting scheme. Our results in terms of the computation of the non-reliability

output weights do not differ substantially from the ones found by Economic Insights. As we

mentioned in the introduction, we are using a slightly different (updated) dataset compared to

the Economic Insighnts computation. Moreover we are using a different non-linear least squares

optimizer, which may return slighlty different values for the estimated parameters of the Leontief

cost function. Given this numerical differences in the dataset and the estimated coefficients, the

resulting differences in the calculated non-reliability output weights are of a negligible order and

within the expected tolerance level of numerical optimization.

As discussed above the non-reliability output weights are obtained using the estimated pa-
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rameters of the Leontief cost function. Since our set of estimates of the Leontief cost function

will differ (even if by a small margin due to the numerical optimizer used) from the one used

by the AER, it is important to keep in mind that this small differences will carry over to the

computation of the non-reliability output weights3.

3.1 Transmission

Economic Insights
(Original)

Economic Insights
(Corrected)

Our Calculation

Energy throughput 23.11% 14.91% 14.95%
Ratcheted max. demand 19.44% 24.71% 24.90%
End-user customer numbers 19.90% 7.59% 7.53%
Circuit length 37.55% 52.79% 52.62%

Table 1: Non-reliability output weights for the TNSP

Table 1 reports the values of the non-reliability output weights for the TNSP. The first column

reports the original incorrect value of these weights as computed by Economic Insights (pag. 4,

table 1.1) and the second column reports the corrected weights as computed by Economic Insights.

Our calculations are reported in the last column. The differences between these sets of numbers

are in general not so large. In fact the differences between the second and third columns are small

and well within the tolerance level bounds of standard numerical optimization methods. There

is a difference of 0.04% in the energy throughput weight; a difference of 0.19% in the weight

of the ratcheted maximum demand; a difference of 0.06% in the number of customers; and a

difference of 0.17% in the circuit length. These are small differences, especially if contrasted with

the reported uncorrected shares from the Economic Insights report which are here shown in the

first column. The differences in this case are quite substantial. Energy throughput changes by

8.20%, ratcheted maximum demand by 5.27%, End-user customer numbers by 12.31% and circuit

length by a staggering 15.24%.

3To be sure, the set of estimates associated with the Leontief cost function parameter estimates will differ from
the ones used by the AER due to the choice of the non-linear optimization algorithm used and the various numerical
tolerance levels and stopping criteria used by this algorithm.
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From this exercise we conclude that the current method of calculation of the non-reliability

output weights used by the AER is numerically correct and within the tolerance levels of the

non-linear least squares numerical optimizer.

3.2 Distribution

Economic Insights
(Original)

Economic Insights
(Corrected)

Our Calculation

Energy throughput 12.46% 8.58% 8.63%
Ratcheted max. demand 28.26% 33.76% 33.79%
End-user customer numbers 30.29% 18.52% 18.26%
Circuit length 28.99% 39.14% 39.33%

Table 2: Non-reliability output weights for the DNSP

Table 2 reports the values of the non-reliability output weights for the DNSP. The first column

reports the original incorrect value of these weights as computed by Economic Insights (pag.

4, table 1.1) and the second column reports the corrected weights as computed by Economic

Insights. Our calculations are reported in the last column. The differences between these sets of

numbers are small and well within the tolerance level bounds of standard numerical optimization

methods. There is a difference of 0.05% in the energy throughput weight, a difference of 0.03% in

the weight of the ratcheted maximum demand; a difference of 0.26% in the number of customer;

and a difference of 0.19% in the circuit length. Again, these are small differences, especially

if contrasted with the reported uncorrected shares from the Economic Insights report. The

differences in this case are quite substantial. Energy throughput changes by 3.88%, ratcheted

maximum demand by 5.50%, End-user customer numbers by 11.77% and circuit length by a

10.15%.

From this exercise we conclude that the current method of calculation of the non-reliability

output weights used by the AER is numerically correct and within the tolerance levels of the

non-linear least squares numerical optimizer.
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4 Some critical comments on the methodological approach used

by the AER

In this section we will provide some critical comments on the main advantages and shortcom-

ings of the Leontief cost function model used to determine non-reliability output weights. The

major benefit of using the current specification of the Leontief cost function is that it represents

a very flexible functional form. The Leontief function is usually regarded as a very inflexible

functional form because it requires fixed coefficients of production, therefore not allowing for

substitution possibilities among inputs. This would be regarded in practice as a feature that

provides poor prediction performance in fitting the data. It should be noted however that the

Leontief cost function as used by the AER has a large number of parameters, since the input

demand functions are input and firm specific. This provides a level of flexibility that allows a

very good fitting to the data, possibly better than the more commonly used translog functional

specification. A proper account of the ability of the Leontief cost function to provide a good fit

to the data is discussed in the next sub-section.

The main potential shortcoming of the current Leontief cost function method for the compu-

tation of non-reliability output weights, mainly comes from the fact that it is based on non-linear

least squares (nls). Non-linear least squares requires to solve a non-linear optimization program

in order to determine the parameter estimates. This raises two potential issues that do not affect

the standard ordinary least square problem. First, there can be several local optima in terms

of the value of the objective function (the sum of squares). Given any initial parameter value,

the resulting optimum found by the solver is not necessarily a global optimum. This problem is

normally solved by using a grid of values for the initial parameter estimates and then comparing

all the found optimal solutions for each set of initial parameter values. In the case of the AER

benchmarking exercise, the Leontief cost function has 5 parameters and therefore a grid search on

a 5-dimensional space becomes computationally intractable. The second problem is also a numer-
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ical problem and is related to the fact that for any given optimal value of the objective function

that the solver has found, there may exist several optimal solutions in terms of the parameter

values. Therefore the parameter estimates of the coefficients of the Leontief cost function are not

necessarily unique. This second problem may affect the computation of the non-reliability output

weights if the non-linear least squares problem is solved using different solvers (say STATA, or

Shazam, or R, or Matlab). Each solver will likely provide a different set of estimates and it is

not clear how one can choose from them. While the potential for these shortcomings has been

identified theoretically, it was beyond the requirements of this report to determine if this was the

case in the AER benchmarking exercise. This is an area the AER may want to explore further

in the future. We will discuss these potential benefits/shortcomings of the Leontief cost function

approach in the following sub-sections and we will provide some partial solutions that could be

adopted by the AER in section 5.

4.1 Flexibility of the Leontief cost function specification

The Leontief cost function is not estimated directly but, as explained earlier, its input demand

functions are estimated one by one independently from each other. Notice that each one of these

input demand equations is estimated separately for each input and each firm. There is a total

number of 20 input demand equations for the TNSP and a total of 65 input demand equations for

the DNSP. Each equation is estimated using the T time periods available for each input and each

firm. Given that there is a total number of four outputs, this means that there are 5 coefficients

to be estimated using T observations.

Although the Leontief cost function is normally considered an inflexible functional form since

it does not allow for substitution possibilities among inputs, it should be noted here that there

is a total of 5×M ×K = 20×K number of parameters to fit a cost function for the whole panel

dataset. This is because there are 5 parameters (one parameter for each output plus the time

trend parameter) for each input demand equation and M ×K of such input demand equations to

15



be estimated (where K is the number of service providers and M the number of inputs). In both

the transmission and distribution case, this means that the cost function provides an extremely

flexible functional form. To see this, re-write the cost function in the following way:

C(ykt, wkt, t) =
∑
j

Cj(y
kt
j , wkt, t) (7)

with

Cj(y
kt
j , wkt, t) =

∑
i

wkt
i (akij)

2yktj (1 + bki t) (8)

Notice that an implicit hypothesis is that the cost functions for the different outputs can be

separated and therefore cost can be apportioned to each specific output separately. Now, notice

that the cost function associated with output j has a total of M × K parameters for K × T

observations. This means that as long as M < T the model is identified. Moreover it should be

noted that if we were to use a translog specification for the cost function associated with output

j as a benchmark for flexibility of the functional form, for such a function there would be a total

of (M+1)(M+2)
2 parameters to be estimated. Since in general K > M , the Leontief cost function

so specified is more flexible than the translog cost function. In fact, in the transmission case the

Leontief output specific cost function will have a total of 25 parameters and the translog function

a total of 15 parameters: this means that the Leontief function achieves a higher level of flexibility

compared to the translog function. In the distribution case the Leontief cost function will have

a total of 65 parameters and the translog function would still have only 15 parameters: both

functions are estimated using 169 observations, but the Leontief function will have the potential

to achieve much higher flexibility in fitting the data, given the higher number of parameters. The

reason why flexibility is important in this context is that the computation of the non-reliability

output weights will depend on the ability of the cost function estimates to predict observed cost

accurately. A more flexible functional form will provide predicted cost estimates that are closer
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to the observed ones than a less flexible functional form would, and in this respect the Leontief

cost function adopted by the AER will provide a better fit to the data.

4.2 Numerical Stability of the Leontief cost function estimates

The input demand functions derived from the Leontief cost function are estimated using non-

linear least squares (nls). This means that one has to solve a non-linear optimization program

in order to compute the estimates of the parameters of interest and the predicted total cost of

production. There are several numerical challenges in estimating a regression using nls, due to

the non-linear nature of its underlying optimization program. The two most important ones are:

1) in non-linear optimization there is no guarantee that one obtains a global optimum4; 2) there

may be multiple solutions in terms of the underlying parameter values that will support any

given optimal solution, meaning that the solution in terms of the parameter estimates may not

be unique.

The first problem should not be difficult to solve even in the current modelling of the Leontief

cost function and it is highly recommended that the AER investigates in the future the possibility

of considering minor modifications to the Leontief cost function specification that can be estimated

via more reliable convex programming methods, which would ensure uniqueness and numerical

stability of the optimal solution. This is not a point that should be underestimated and the next

section will suggest some ways of implementing this.

As for the second point, there is no simple way forward, but a good method would rely on

having criteria for choosing among alternative solutions in order to obtain a numerically stable

value for the estimates that can be easily reproduced via convex programming. At the very least,

the method used should allow to make an assessment of the spread of the solution values. This

will be addressed in the next section as well.

4Any non-convex optimization program will in general have multiple solutions known as local optima. Among
those solutions, one or more can have the optimal (maximal or minimal) value of the objective function to be
optimized. These particular local optima are also known as global optima.
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5 Alternatives to the current AER approach

Given the Leontief function is already quite a flexible approach that fits the data well, it is

unlikely that generilizing this functional form (for example to a constant elasticity of subsitution

(CES) function) would provide a significant better fit to the data, although it would be interesting

to explore this in more detail in the future. In particular, it would be interesting to explore the

possibility of extending this very same framework to what is known as the constant elasticity

of subsitution (CES) production function and its associated cost function. The CES function

will return both the Cobb-Douglas and the Leontief specifications as special cases, and it could

represent a good way of introducing input substitution possibilities and testing them to check if the

inputs are substitute or complement. Although appealing from an economic theory perspective,

this avenue will share the same numerical problems encountered with the Leontief cost function

(i.e. numerical instability and reliance on the non-unique parameter values for the computation

of the output weights). Moreover, given the very good fit to the data shown by the Leontief

function, it is not clear if the complications associated with this extensions would be justified in

terms of returning a better representation of the cost structure of the Australian energy service

providers.

However, in light of the issues raised above, some potential improvements to the current

Leontief approach can be suggested. These includes:

• modifying the time trend specification to a simple linear time trend;

• modifying the non-linear least squares program to obtain a minimization of absolute devi-

ations (that can be converted easily into a linear program);

• use the linear program associated with the minimization of least absolute deviations to

assess the numerical stability of the Leontief parameter values estimates.

While outside the scope of this review, we will also make the additional point that the AER
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could consider alternatives to the productivity index number (PIN) methodology that do not

require the calculation of output weights, but rather use direct computation of the cost functions

to be used for benmchmarking.

The Leontief cost function for observation k = 1, . . . ,K in time period t is the following:

C(ykt, wkt, t) =
∑
i

wkt
i

∑
j

(akij)
2yktj (1 + bki t) (9)

where i is indexing the inputs and j is indexing the outputs. The input demands are:

xkti =
∑
j

(akij)
2yktj (1 + bki t), ∀i, k, t (10)

and these are used to estimate the regression models. For each regression model associated

with one particular input demand function, the set of parameter estimates will be obtained by

minimizing a least squares criteria, therefore by solving the following optimization program for

each regression (for each firm k and each input i):

min
akij ,b

k
i

∑
t

xkti −
∑
j

(akij)
2yktj (1 + bki t)

2

(11)

This is a non-linear optimization program. The non-linearity of this program is coming from:

the squared parameters akij ; from the fact that the time trend coefficient is multiplying these

squared parameters. Currently the AER solves this least squares problem using non-linear least

squares. An alternative to this method can be implemented by noting that for a given value of bki

the non-linearity of the program derives only from the squared Leontief parameters. By defining

zktj = yktj (1 + bki ), one can solve the following constrained quadratic program for a given selected
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value of bki :

min
akij

∑
t

xkti −
∑
j

akijz
kt
j

2

s.t. akij ≥ 0, ∀j

(12)

This program is a quadratic program, in particular a non negative least squares problem,

therefore admitting a unique solution for a each given value of the parameter bki . A grid search

over the parameter bki can be used to return the optimal solution. This provides a more suitable

alternative to the use of non-linear least squares. Moreover, inspection of the optimal value of

the objective function for various values of bki will also inform on possible multiple solutions in

terms of this parameter, thus representing a good robustness exercise. The question remain if

the Leontief specification can be further simplified to allow for a simplified estimation strategy.

5.1 Simplification of the time trend specification

A first step towards the simplification of the optimization program linked to the least squares

estimation of the Leontief cost function relates to the treatment of the time trend. It should be

immediately noted that it is not clear if a time trend should be included at all. The effect of

the time trend specification is in most cases to adapt the cost function with changes in time.

A negative sign for this coefficient means that cost is decreasing and the input demand is also

decreasing over time, therefore signalling technical progress (i.e. a more efficient use of resources

overtime). A positive sign of the coefficient bki means that cost is increasing in time and the

input demand increasing as well, signalling that there is technical regress (a deterioration of

the efficiency of use of resources overtime). Although one may want to make allowance for the

possibility of technical progress, it is not clear why one should allow for technical regress. In

fact, it is not clear what would cause a deterioration in the technology used to produce energy,

apart from a more inefficient use of resources. Allowing the possibility of technical regress in

the current specification may represent a form of cost plus allowance for those service providers
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that have increased their cost overtime. Alternatively, one may interpret a negative sign of this

coefficient to reflect cost changes over time due to other factors that are not explicitly specified in

the model or related to technical change. This may include changes in the regulatory environment

(e.g. higher vegetation management responsibility) or changes associated with the penetration of

distributed energy resources which may increase the cost of maintaining the network.

Apart from these interpretational issues, on a more technical note, the effect of time on the

input demands is given by the derivative of the input demand function with respect to time:

TCkt = bki
∑
j

(akij)
2yktj (13)

This quantity is the effect of the time trend on the input quantity demanded: if it is positive,

it provides the additional input quantity needed to sustain production; if it is negative, it provides

the savings in the input quantity that would still sustain production. This quantity depends on

two factors: the time-invariant coefficient bki ; the total output production
∑

j(a
k
ij)

2yktj . Since the

Leontief coefficients akij are time-invariant, the time variation in the second quantity comes from

the variation in time in the output volume yktj . And since in the current dataset used in the

AER benchmarking exercise these quantities do not vary in time substantially, the effect of the

time trend on the input quantities is more or less constant in practice. And since TC is more or

less constant, one can include it directly as a linear trend by writing the following input demand

function:

xi = βk
i t+

∑
j

(akij)
2yj (14)

derived by its associated cost function:

C(ykt, wkt, t) =
∑
i

wkt
i

∑
j

(akij)
2yktj +

∑
i

wkt
i βk

i t (15)

The derivative of the demand function with respect to time will return a constant time trend
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of βk
i . Notice that βk

i ̸= bki , but it will be approximately equal to TCkt in the current dataset.

There will be a small loss of fitting (due to the fact that the TC component will be assumed

constant instead of being allowed to be time varying), but this is the more negligible the more

stable the TCkt is in its time variation (in the original specification). Moreover, there is a

theoretical argument in favour of a simpler specification, in the sense that a simpler model should

be preferred to a more complicated one (parsimony principle), unless the more complicated one

provides a much better fitting to the data. Our analysis points to the fact that a simpler time

trend specification is justified in the case of the AER benchmarking exercise.

Implementing this small change in the functional form specification of the time trend will

substantially decrease the computational complexity of the model. The regression estimates of

the parameters will now be the outcome of the following least squares program:

min
akij ,β

k
i

∑
t

xkti − βk
i t−

∑
j

(akij)
2yktj

2

(16)

This is still a non-linear optimization program, but the non-linearity is only arising from the

square of the Leontief coefficients akij . Since the purpose of taking the square of these coefficients is

justified on the ground that the Leontief coefficients should not be negative, one can equivalently

re-write the program as a constrained program:

min
αk
ij ,β

k
i

∑
t

xkti − βk
i t−

∑
j

αk
ijy

kt
j

2

s.t. αk
ij ≥ 0, ∀j

(17)

These two simple modifications have now transformed the non-linear least squares problem

into a quadratic program that can be easily solved using standard solvers. Since quadratic

programming is a convex optimization program, this also means that this strategy will return

a unique solution in terms of the objective function, therefore solving the problem intrinsic in
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non-linear optimization of not being able to rule out if the solution is a local or a global optimum.

Moreover, due to the much more simple optimization, this also means that the program solution

will always be found, contrary to non-linear algorithms that may fail convergence. Finally, the

solution of this program will also be independent from any grid search or initial values for the

parameter estimates. All in all, these minor modifications will solve the first computational

problem highlighted in the previous section. Even if this problem is solved, there is still the

second problem of having potentially many alternative optimal values in terms of the parameter

estimates. This will be discussed in the next sub-section. It should also be emphasized here that

since the program is a quadratic one, it is possible to include additional constraints to prevent

technical regress from happening, if one wishes to do so.

5.2 Minimization of Mean Absolute Deviations

The previous sub-section has suggested a minimal change to the way in which time trend is

included in the input demand function that permits to write the associated least squares problem

as a quadratic program. Although this solves the problem of potentially having a local optima,

by guaranteeing always convergence to a global optimum, it does not solve the problem of the

multiplicity of solutions in terms of the parameters of the Leontief cost function akij . Although this

problem cannot be eliminated in the current framework adopted by the AER for benchmarking,

some additional modifications can be implemented to at least quantify the extent to which this

multiplicity of solutions may affect the non-reliability output weights. In the conclusion section

of this report, we will highlight how one could avoid this problem altogether by computing the

cost benchmark using index numbers derived directly from a cost function.

In order to take a further step in the direction of simplification, one could change the min-

imization criteria from least squares to sum of absolute deviations. The absolute deviation is

|xti − βit −
∑

j αijy
t
j | and it corresponds to the absolute value of the deviation of the observed

value of the dependent variable from the predicted one. The program associated with the mini-
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mization of absolute deviations will return the following:

min
αk
ij ,β

k
i

∑
t

∣∣∣∣∣∣xkti − βk
i t−

∑
j

αk
ijy

kt
j

∣∣∣∣∣∣
s.t. αk

ij ≥ 0, ∀j

(18)

This program can be transformed and solved as a linear program and it will coincide with a

quantile regression that is looking at the expected median instead of the expected mean. The

associated linear program will take the following form (where we introduce the additional decision

variable ut):

min
αk
ij ,β

k
i ,ut

∑
t ut

s.t. αk
ij ≥ 0, ∀j

xkti − βk
i t−

∑
j α

k
ijy

kt
j ≤ ut, ∀t

βk
i t+

∑
j α

k
ijy

kt
j − xkti ≤ ut, ∀t

(19)

We are now in a position to assess the numerical stability of the coefficient estimates. Before

discussing this in the next section, it is also interesting to notice that one can make another step

and look at this same program as an efficiency program, by making deviations one sided and

de-facto allowing for inefficiency in the use of inputs:

min
αk
ij ,β

k
i

∑
t

xkti − βk
i t−

∑
j

αk
ijy

kt
j


s.t. αk

ij ≥ 0, ∀j

xkti − βk
i t−

∑
j α

k
ijy

kt
j ≥ 0, ∀t

(20)

The difference between the observed values for the inputs and the predicted values from this

last program, will return a measure of inefficiency in the use of inputs, therefore signalling how

far the observation is from the Leontief vertex given by the Leontief coefficients.
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5.3 Assessing the numerical stability of the coefficient estimates

The numerical stability of the estimated Leontief coefficients can be quantified in the following

way. Take the objective function optimal solution of program (19) and call it U∗. We can now

search among all the parameters that support this optimal solution, the smallest and the largest

for each one of them. Consider one particular αk
ij coefficient. To find its minimal possible value

one solves the following linear program:

min
αk
ij ,β

k
i ,ut

αk
ij

s.t. αk
ij ≥ 0, ∀j

xkti − βk
i t−

∑
j α

k
ijy

kt
j ≤ ut, ∀t

βk
i t+

∑
j α

k
ijy

kt
j − xkti ≤ ut, ∀t∑

t ut = U∗

(21)

The last three constraints of this program guarantee that the solution will be in fact a solution

that provides the same value for the objective function of program (19). In practice, we are

constraining this program to look among alternative optimal values of the parameters, the one

that is the minimal for αk
ij . Call the solution to this program mk

ij . Similarly, one could solve the

following program to find out the maximal possible value that αk
ij may take at the optimal:

max
αk
ij ,β

k
i ,ut

αk
ij

s.t. αk
ij ≥ 0, ∀j

xkti − βk
i t−

∑
j α

k
ijy

kt
j ≤ ut, ∀t

βk
i t+

∑
j α

k
ijy

kt
j − xkti ≤ ut, ∀t∑

t ut = U∗

(22)

If we call the solution of this program Mk
ij , then it must be that for each Leontief coefficient,
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its optimal value must be between these bounds: mk
ij ≤ αk

ij ≤ Mk
ij . In practice if these numerical

bounds are tight, then this will guarantee that the associated non-reliability output weights will

be numerical stable and similar across alternative optimal solutions. If these bounds are large,

then the associated non-reliability output weights may vary significantly.

5.4 Direct Cost Benchmarking

Although potential numerical problems may exist in the current Leontief cost function frame-

work adopted by the AER benchmarking exercise, they could be overcome altogether by moving

to what shall be defined as direct cost benchmarking. This means using the cost function to di-

rectly compute the major driver of costs and in so doing providing a guidance to set appropriate

price caps.

While beyond the requirements of this project, which were to explore other feasible approaches

to determining the non-reliability weights, this is something that the AER may want to consider at

some point in the future when it is more broadly reviewing its benchmarking exercise methodology.

Direct cost benchmarking would involve computation of the cost function using mathematical

programming methods such as data envelopment analysis (DEA). In such a case, one would

estimate a cost function as for step 1 of the AER benchmarking approach, although this would

be done with a different method that does not suffer from the potential numerical problems that

may affect the current Leontief approach adopted by the AER and described above. But then,

instead of using the cost function to estimate output weights in step 2 (and Tronqvist indexes in

step 3), one would directly compute a productivity change index using the cost function. Since

one is using the estimated cost function to directly compute the productivity index, we shall

refer to this method as a direct cost benchmarking. There could be two main advantages of

using this method: the first one would be that the resulting productivity index would not suffer

from the potential numerical instability that has been identified as a feature of the current AER

benchmarking approach; the second one would be that one has the ability of decomposing this
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productivity index into components related to the underlying causes of cost change. In particular

one could identify two main effects: the effect on cost of an increase in input prices; and the

effect on cost of an increase in the volume of outputs. Such an approach would help in further

understanding the drivers of cost change for the energy service providers.

6 Conclusion

As explained in the previous sections the AER benchmarking approach makes use of what

can be described as a three step procedure:

1. estimate the specified Leontief cost function (via non-linear least squares);

2. use the parameter estimates from the Leontief cost function to derive non-reliability output

weights;

3. use the so obtained non-reliability output weights to build Tornqvist indexes of productivity

change.

The current report has focused on the first two steps of this procedure by providing an

independent review of all the numerical computations conducted by the AER at the first and

second step. We found that our own computations of the non-reliability output weights are very

close to the ones computed by the AER, where the differences are within the normal tolerance

level that one would expect from non-linear optimization procedures. This points to the fact that

the current AER method of computing non-reliability output weights is substantially correct.

In section 4 it has been explained why estimating the Lenontief cost function via non-linear

least squares may lead to numerically unstable results, with multiple solutions for the estimates

of the coefficients that may lead to alternative set of weights for the non-reliability outputs. In

section 5 some possible improvements of the current methodology have been proposed that may

improve the numerical stability of the results without changing the underlying 3-step approach to
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the computation of the Tornqvist productivity indexes and with minimal changes to the specifica-

tion of the Leontief cost function. In these sections it was discussed how the Leontief cost function

currently employed by the AER represents a very flexible functional form due to the relatively

large number of parameters used in its definition. Finally, it has been discussed various possible

modification of the current setting used by the AER. One of these possibilities is the use of what

we have called direct cost benchmarking, a method that relies on mathematical programming to

compute directly efficient cost and its main drivers.

7 APPENDIX: Responses to stakeholder submissions.

In this appendix we respond to some critical comments raised by some service providers on a

draft of this report.

7.1 Jemena

Jemena made the following three major comments on the draft report provided by CEPA:

1. a suggestion to use more recent data for the computation of the output weights;

2. a comment on the impact of the revised capitalization approach on output weights and

inconsistency between input and output weights due to different capitalization methods;

3. introduction of a fixed cost component in the cost function.

The first two points raised by Jemena were outside the scope of the work undertaken by CEPA,

as agreed with the AER. CEPA was asked to conduct a review of the current methodology using

the same data that were used to compute the last round of output weights. The main purpose of

the analysis undertaken by CEPA was to check that the computation of this output weights was

done correctly. Although outside the scope of the analysis undertaken by CEPA, our assessment

of these first two points raised by Jemena is in general supportive, in the sense that the use of
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more recent data and a homogenization of the capitalization methods for both the inputs and

outputs would be advisable.

The third point raises an important question about the presence of fixed costs in the produc-

tion process. In the current specification of the Leontief cost function there is no allowance for

such fixed costs. We note however that the proposal of including a fixed cost component is in

the same direction as the CEPA report proposal of linearizing the time trend component in the

Leontief cost function. In fact, this means adding an intercept to the regressions of the input

demand functions defined in equation (14). The other two service providers have raised concerns

over the introduction of this time trend specification and implicitly over the introduction of the

type of fixed costs proposed by Jemena. One of the reasons for this concern raised by Ausgrid

and Evoenergy is that the definition of the output weights needs to be revised if such an approach

is adopted. In fact, by adding an intercept to the input demand regressions (or by linearizing

time trends), one is violating the cost separability assumption that underlies the current Leontief

framework, which allows to apportionate overall cost to the separate outputs. It should be noted

however that in this alternative specification the cost function would take the following form:

C(ykt, wkt, t) =
∑
i

wkt
i

∑
j

(akij)
2yktj +

∑
i

wkt
i βk

i t+
∑
i

wkt
i γki (23)

Even in this specification, output weights could be computed by using the separable part of

the cost function
∑

iw
kt
i

∑
j(a

k
ij)

2yktj . Since the fixed costs are paid irrespective of the level of

production, this provides a good rationale to do so. We are in general supportive of the proposal

of including an intercept in the input demand equations.

7.2 Evoenergy and Ausgrid

Evoenergy and Ausgrid raised the following main critical points about CEPA’s recommenda-

tions:

29



1. agreed on the fact that the linearization of the time trend would simplify computation, but

at the cost of loosing the Leontief interpretation.

2. support for the proposal of introducing a quadratic programming specification approach to

estimate the parameters of the Leontief cost function;

3. a concern about the potential use of the LAD approach, by claiming that its main use

should be confined to situations with the presence of outliers in the data;

4. a general criticism of direct cost benchmarking based on the fact that if adopted direct cost

benchmarking would deny service providers the possibility of tracking their own performance

relative to other service providers.

With regard to the first point on the linearization of the time trend, we notice that a Leontief

cost function requires that the production function is of the fixed coefficients type, which indeed

implies that the associated dual cost function is linear in the input prices. Notice that there is

(to the best of our knowledge) no common accepted strategy for the introduction of time trends

in such a specification. The cost specification proposed by CEPA can still be interpreted as a

Leontief cost function, since it is linear in prices and its first derivative provides input demand

functions that depend on the level of output only (i.e. they are independent of input prices

as required by the Leontief specification). In equation (15) we now report the cost function

associated with such a specification.

The second point raised by Evoenergy is supportive of CEPA proposal of using quadratic

programming as a way of avoiding numerical problems that may be encountered by non-linear

least squares. For a given value of the time trend coefficient (in the current non-linear specifi-

cation adopted by the AER), the optimization program becomes a quadratic program, or more

specifically a non-negative least squares problem. This admits a unique solution in terms of the

parameter estimates for the given value of the time trend parameter. One could then conduct a
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grid search over alternative values of the time trend parameter and choose the one that minimizes

least squares, thus achieving a global optimum. Since the grid search is conducted over one pa-

rameter only (the time trend) and since non-negative least squares is computationally fast, this

becomes a computationally tractable strategy. We notice, however, that there may still exists (in

principle) alternative points on the grid that may deliver a minimum, therefore uniqueness of the

solution cannot be guaranteed, although this would allow to identify these alternative solutions.

This would still represent a valuable alternative to non-linear least squares, since multiplicity of

solutions can be easily checked and the computational implementation would be faster and more

accurate.

The third point raised by the service providers is in regard to the use of least absolute devia-

tions. It is true, as pointed out correctly by the service providers, that a least absolute deviations

problem is less prone to be influenced by the presence of outliers. The introduction of least abso-

lute deviations in section 5.3 of the report was not done with the intention of dealing with outliers.

It was done with the intention of illustrating another alternative way in which the analysis could

be conducted. The subsequent analysis on the sensitivity of the solution in terms of the decision

variables is somehow standard in linear programming and may help in establishing numerical

bounds on such coefficients. These bounds can then be potentially used to check the sensitivity

of the output weights to alternative optimal solution values for of the Leontief coefficients.

Finally, in the fourth point raised concerns over the use of direct cost benchmarking. We first

acknowledge that this section of the report (5.4) was beyond the scope of this report. We notice

however that a direct cost benchmarking approach allows for the same sort of analysis that is

currently conducted using the PIN methodology. This means that each service provider would

be provided with the same information as currently done in the AER benchmarking exercise.

Evoenergy and Ausgrid also raised the following of points that were not directly addressed in

the CEPA report:
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1. a suggestion to have a more frequent update of the output weights;

2. the possible presence of multicollinearity and its impact on the computation of output

weights;

3. the potential non-linear Opex changes in time that are not allowed in the current AER

specification, as well in the various specifications proposed by CEPA.

The first point raises a general question about the frequency of updates of the output weights.

This was outside the scope of the report for which CEPA was engaged by the AER.

The second point raises concerns over the presence of multicollinearity. The main effect of

multicollinearity in a regression model is to inflate the standard errors of the estimates. How this

affects the computation of the output weights is unclear, in the sense that the standard errors of

the cost function parameter estimates are not used to assess the sensitivity of the output weights

with respect to these standard errors. We notice however that the AER is using the standard

practice of computing the output weights using point estimates, which is the generally accepted

practice in econometrics. Using standard errors to provide measures of uncertainty around the

output weights is complicated and outside the scope of the current report. Moreover, the possible

use of additional years of data in future rounds may help to alleviate the problem.

The third point about non-linearities in the evolution of the Opex change actually points to

the fact that direct cost benchmarking would help mitigate this problem. The only alternative

solution in the current framework is to include additinal components in the time trend specifica-

tion. The Leontief cost function model in its current specification is already extremely flexible

(as pointed out in the report) and the inclusion of additional parameters may cause overfitting.
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